DOI QR코드

DOI QR Code

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal

K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구

  • Received : 2017.03.06
  • Accepted : 2017.04.03
  • Published : 2017.09.30

Abstract

The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.

본 연구는 악취가스 물질(바이오가스의 불순물)의 하나인 $H_2S$를 제거하기 위한 흡착제의 성능을 향상시키기 위해 수행하였다. 기본 담체로서 4가지 물질($Fe_2O_3$, $Ca(OH)_2$, 분말 활성탄, $Al(OH)_3)$을 혼합 사용하여 pellet 형태의 흡착제를 제조하였다. 또한, 4가지 물질의 $H_2S$ 흡착에 미치는 영향을 평가한 결과, $Fe_2O_3$와 분말활성탄은 $H_2S$ 흡착성능이 각각 1.5, 2배로 증가하는 것으로 나타났으며 $Ca(OH)_2$$Al(OH)_2$$H_2S$ 흡착성능에는 영향이 없는 것으로 나타났다. 또한 4가지 물질을 기본혼합 담체로 한 후, 활성물질로 KI, KOH, $K_2CO_3$를 선정하여 각각 5 wt% 첨가한 후에 $H_2S$ 흡착성능을 시험한 결과 $K_2CO_3$를 첨가한 흡착제가 가장 성능이 우수한 것으로 나타났다. 또한 $K_2CO_3$를 5 ~ 30 wt%까지 변화시키면서 흡착성능을 확인한 결과, $K_2CO_3$ 함량이 20 wt%까지는 함량과 비례하여 $H_2S$ 흡착성능이 증가하는 것을 확인할 수 있었으나 30 wt%에서는 $H_2S$ 흡착성능 급격히 떨어지는 것을 확인하였다. 또한 $K_2CO_3$ 첨가 함량에 따른 $H_2S$ 흡착성능을 바탕으로 Thomas model을 이용하여 모델링을 실시한 결과에서도 $K_2CO_3$ 함량이 20 wt%까지는 실험값과 모사값이 잘 일치하고 있음을 보여주었다. 이러한 결과들을 바탕으로, 본 연구에서 확인된 활성물질의 종류와 활성물질의 함량을 흡착제 제조에 이용한다면 $H_2S$ 흡착제의 흡착성능 개선뿐만 아니라 흡착제의 사용수명 증대를 기대할 수 있었다.

Keywords

References

  1. Kastenmeier, B., Matsuo, P., Oehrlein, G., and Langan, J., "Remote Plasma Etching of Silicon Nitride and Silicon Dioxide using $NF_3/O_2$ Gas Mixtures," J. Vacuum Sci. and Technol.-Sect. A-Vacuum Surfaces and Films, 16, 2047-2056 (1998). https://doi.org/10.1116/1.581309
  2. Nakamura, S., Itano, M., Aoyama, H., Shibahara, K., Yokoyama, S., and Hirose, M., "Comparative studies of perfluorocarbon Alternative Gas Plasmas for Contact Hole Etch," Japanese J. Appl. Phys., 42, 5759 (2003). https://doi.org/10.1143/JJAP.42.5759
  3. Muhle, J., Ganesan, A., Miller, B., Salameh, P., Harth, C., Greally, B., Rigby, M., Porter, L., Steele, L., and Trudinger, C., "Perfluorocarbons in the Global Atmosphere: Tetrafluoromethane, Hexafluoroethane, and Octafluoropropane," Atmos. Chem. and Phys., 10, 5145-5164 (2010). https://doi.org/10.5194/acp-10-5145-2010
  4. Namgung, H. K., Yoon, C. N., and Song, "A Bioreactor for the Effective Removal of the Hydrogen Sulfide from Biogas," J. H., J. Korean Soc. Atmos. Environ., 29(6), 811-817 (2013). https://doi.org/10.5572/KOSAE.2013.29.6.811
  5. Osorio, A. F., and Torres, B. J. C., "Biogas Purification from Anaerobic Digestion in a Waste Water Treatment Plant for Biofuel Production," Renew. Energy, 34, 2164-2171 (2009). https://doi.org/10.1016/j.renene.2009.02.023
  6. Ministry of Knowledge Economy, "Study of Institutionalized Measures for the use of Alternative Gas LNG," (2009).
  7. Park, Y. G., and Yang, Y. S., "Resourcing of Methane in the Biogas Using Membrane Process," Clean Technol., 20(4), 406-414 (2014). https://doi.org/10.7464/ksct.2014.20.4.406
  8. Korea Environment Corporation, "Energy Technology of Biogas," (2011).
  9. Jeong, M. J., Lee, S. W., and Kim, D. K., "Adsorption of Hydrogen Sulfide on Surface Modified Activated Carbon using Ferric Nitrate," J. Korean Soc. Atmos. Environ., 31(2), 173-180 (2015). https://doi.org/10.5572/KOSAE.2015.31.2.173
  10. Park, D. S., Lim, J. Y., Cho, Y. G., Song, S. J., and Kim, J. H., "A Study on Comparison on Adsorption Characteristics of Zeolite and DETOX for the Removal of H2S," J. Korea Acad.-Ind. Cooperat. Soc., 15(7), 4675-4681 (2014).
  11. Antonio-Abdu Sami M., Magomnang, Prof. Eliseo P., and Villanueva, Ph.D. "Removal of Hydrogen Sulfide from Biogas using Dry Desulfurization Systems" International Conference of Agricultural Environmental and Biological Sciences (AEBS-2014), April 24-25, 2014 Phuket (Thailand).
  12. Muhammad Rashed Al Mamun and Shuichi ToriI, "Removal of Hydrogen Sulfide(H2S) from Biogas Using Zero-Valent Iron," J. Clean Energy Technol., 3(6), 6 (2015).
  13. Choi, D. Y., Jang, S. C., Gong, G. T., Ahn, B. S., and Choi, D. K., "$H_2S$ Adsorption Characteristics of KOH Impregnated Activated Carbons," J. Korean Ind. Eng. Chem., 17(3), 280-285 (2006)
  14. Choo, H. S., Lau, L. C., Mohamed, A. R., and Lee, K. T., "Hydrogen Sulfide Adsorption by Alkaline Impregnated Coconut Shell Activated Carbon," J. Eng. Sci. and Technol., 8(6), 741-753 (2013).
  15. Steven, M. Z., "Removal of Hydrogen Sulfide from Biogas using Cow-Manure Compost," Master of Science Thesis, Cornell University, USA (2003).
  16. Long, N. Q., and Loc, T. X., "Experimental and Modeling Study on Room-Temperature Removal of Hydrogen Sulfide using a Low-Cost Extruded $Fe_2O_3$-based Adsorbent," Adsorption, 22, 397-408 (2016). https://doi.org/10.1007/s10450-016-9790-0
  17. Kundu, S., and Gupta, A. K., "As(III) Removal from Aqueous Medium in Fixed Bed Using Iron Oxide-Coated Cement (IOCC): Experimental and Modeling Studies," Chem. Eng. J., 129, 123-131 (2007). https://doi.org/10.1016/j.cej.2006.10.014
  18. Thmoas, H. C., "Heterogeneous Ion Exchange in a Flowing System," J. Am. Chem. Soc., 66, 1644-1666 (1944).
  19. Bharathi, K. S., Ramesh, S. K. P. T., "Fixed-bed Column Studies on Biosorption of Crystal Violet from Aqueous Solution by Citrulus Lanarus Rind and Cyperus Rotundus," Appl. Water Sci., 3, 673-687 (2013). https://doi.org/10.1007/s13201-013-0103-4
  20. Allal, K. M., Dolinier, J.-C., and Martin, G., "Reaction Mechanism of Calcium Hydroxide with Gaseous Hydrogen Chloride," Revue De L'Institut Francais Du Petrole, 53(6), (1998).
  21. Zulkefli, N. N., Masdar, M. S., Jahim, J., and Majlan, E. H., "Overview of $H_2S$ Removal Technology from Biogas Production," Int. J. Appl. Eng. Res., 11(20), 10060-10066 (2016).
  22. Foad, A., Andrey, B., Bandosz, T. J., "Analysis of the Relationship between $H_2S$ Removal Capacity and Surface Properties on Unimpregnated Activated Carbons," Environ. Sci. and Technol., 24(4), 686-692 (2000).
  23. Jun, I., Hiroyuki, T., Akinori, Y., Shunji, K., and Kazuo, H., "$H_2S$ Removal and Enrichment from Off-Gas of Geo-Thermal Power Plant with using Pressure Swing Adsorption," Fundamentals of Adsorption, Conference of Fundamentals of Adsorption, 6th, Geins, Fr., May 24-28 (1998).
  24. Shioa, S.-J., "Preparing Activated Red Mud," GB 1398831 (1975).