DOI QR코드

DOI QR Code

Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis

과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구

  • Lee, Jae-Hwa (Department of Environmental Engineering, Pusan National University) ;
  • Kim, Bong-Jun (Wintech) ;
  • Jeon, Soo-Bin (Department of Environmental Engineering, Pusan National University) ;
  • Cho, Joon-Hyung (Department of Environmental Engineering, Pusan National University) ;
  • Kang, Min-Kyoung (Institute of Environmental Studies, Pusan National University) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University)
  • 이재화 (부산대학교 사회환경시스템공학과) ;
  • 김봉준 (윈테크) ;
  • 전수빈 (부산대학교 사회환경시스템공학과) ;
  • 조준형 (부산대학교 사회환경시스템공학과) ;
  • 강민경 (부산대학교 환경연구원) ;
  • 오광중 (부산대학교 사회환경시스템공학과)
  • Received : 2017.02.06
  • Accepted : 2017.07.11
  • Published : 2017.09.30

Abstract

Air pollution associated with the $NO_x$ emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on $H_2O_2$ is suggested and the $H_2O_2$ decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of $H_2O_2$ photolysis reaction. As a result, the optimum quantum yield and photolysis rate of $H_2O_2$ were 0.8798, $0.6mol\;h^{-1}$ at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.

선박 배가스 오염물질에 대한 규제가 강화됨에 따라 한정적인 공간 내에 복합 오염물질을 제어하기 위한 기술로써 습식흡수법은 다양한 오염물질을 동시에 제거할 수 있는 장점을 가지고 있으나 일산화질소의 낮은 용해도로 인한 한계점을 가지고 있다. 따라서 본 연구에서는 일산화질소를 이산화질소로 산화시켜 용해도를 높임으로써 흡수효율을 증대시키는 방안으로 자외선-과산화수소 산화법을 적용하였다. 자외선을 투사하여 생성되는 수산화라디칼의 양자수율과 과산화수소의 광분해속도는 8 W, 2 M의 최적조건에서 각각 0.8798, $0.6mol\;h^{-1}$이며, 1000 ppm 일산화질소의 산화효율은 2 M 과산화수소, 체류시간 3 min의 최적조건에서 40%로 나타났다. 회분식 반응기에서 일산화질소 가스의 제거효율은 100, 300, 500, 1000, 1500 ppm으로 초기농도가 증가함에 따라 각각 65.0, 65.7, 66.4, 67.3, 68.1%로 제거효율이 증가하는 것으로 나타났다. 따라서 본 연구에서 제안하는 산화기술은 습식흡수공정과 연계를 통해 선박 후처리장치로 적용할 수 있다.

Keywords

References

  1. Caiazzo, G., Langella, G., Miccio, F., and Scala, F., "Seawater $SO_2$ Scrubbing in a Spray Tower for Marine Application," In 35th Meeting of the Italian Section of the Combustion Institute, Milano, Italy, 10-12 (2012).
  2. Eyring, V. and Corbett, J., "Comparing Fuel Consumption, $CO_2$ and other Emissions from International Shipping and aircraft," Institute of Atmospheric Physics, Viewed July, No. 4 (2007).
  3. Johansson, L., Jalkanen, J., Kalli, J., and Kukkonen, J., "The Evolution of Shipping Emissions and the Costs of Regulation Changes in the Northern EU Area," Atmos. Chem. Phys., 13(22), 11375-11389 (2013). https://doi.org/10.5194/acp-13-11375-2013
  4. Doo, H.-W., "Amendment to MARPOL 73/78 Annex VI," The Korean Soc. Mar. Eng., 31(5), 486-493 (2007). https://doi.org/10.5916/jkosme.2007.31.5.486
  5. Chang, Y., Roh, Y., and Park, H., "Assessing Noxious Gases of Vessel Operations in a Potential Emission Control Area," Trans. Res. Part D: Trans. and Environ., 28, 91-97 (2014). https://doi.org/10.1016/j.trd.2014.03.003
  6. Bui, Y., "Machinery Concepts and LNG for Meeting IMO tier III Rules," Wartsila Technical Journal: Marine/InDetail, 31-38 (2011).
  7. Vartia, A., "Wartsila Believes Scrubbers are the Solution to Sulpher," Port of Helsinki, No. 2 (2012).
  8. Cooper, C. D., Clausen, III. C. A., Pettey, L., Collins, M. M., and Pozo, de. Fernandez. M., "Investigation of Ultraviolet light-enhanced $H_2O_2$ Oxidation of $NO_x$ Emissions," J. Environ. Eng., 128(1), 68-72 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:1(68)
  9. Liu, Y. X., and Zhang, J., "Photochemical Oxidation Removal of NO and $SO_2$ from Simulated Flue Gas of Coal-Fired Power Plants by Wet Scrubbing using UV/$H_2O_2$ Advanced Oxidation Process," Ind. Eng. Chem. Res., 50(7), 3836-3841 (2011). https://doi.org/10.1021/ie1020377
  10. Liu, Y., Zhang, J., Sheng, C., Zhang, Y., and Zhao, L., "Wet Removal of Sulfur Dioxide and Nitric Oxide From Simulated Coal-Fired Flue Gas by UV/$H_2O_2$ Advanced Oxidation Process," Energy Fuels., 24(9), 4931-4936 (2010). https://doi.org/10.1021/ef100698k
  11. Liu, Y., Zhang, J., Wang, Z., and Du, M., "Simultaneous Removal of NO and $SO_2$ from Flue Gas by UV/$H_2O_2$/CaO," Chem. Eng. Technol., 35(10), 1879-1884 (2012). https://doi.org/10.1002/ceat.201200035
  12. Rathi, A., Rajor, H. K., and Sharma, R. K., "Photodegradation of Direct Yellow-12 using $UV/H_2O_2/Fe^{2+}$," J. Hazard. Mater., 102(2), 231-241 (2003). https://doi.org/10.1016/S0304-3894(03)00213-9
  13. Park, J.-N., Hwang, T.-M., and Lee, C.-W., "A Study on the Determination of Residual Hydrogen Peroxide by UV-VIS Spectroscopy: Phenol Hydroxylatton with $H_2O_2$," J. Korean Ind. Eng. Chem., 14(5), 685-687 (2003).
  14. Lee, S.-J., Jeon, B.-G., Choi, G.-C., and Seo, J.-M., "Indoor air Purification with a UV/$TiO_2$ Photocatalytic Oxidation by Combined Process," Korean Society for Atmospheric Environment, Proceeding of the 39th Meeting of KOSAE, 467-468 (2005).
  15. Volman, D. H., and Chen, J. C., "The Photochemical Decomposition of Hydrogen Peroxide in Aqueous Solutions of Allyl Alcohol at $2537{\AA}$," J. Am. Chem. Soc., 81(16), 4141-4144 (1959). https://doi.org/10.1021/ja01525a004
  16. Lunak, S., and Sedlak, P., "Photoinitiated Reactions of Hydrogen Peroxide in the Liquid Phase," J. Photochem. Photobiol. A., 68(1), 1-33 (1992). https://doi.org/10.1016/1010-6030(92)85014-L
  17. Mimoun, H., and Patai, S., "The Chemistry of Peroxides," The Chemistry of Functional (1983).
  18. Kim, E.-H., Kim, Y.-H., Yoo, J.-H., Choi, C.-S., and Jeong, D.-Y., "Effect of $H_2O_2$ on Photodestruction of Oxalic Acid," Korean Chem. Eng. Res., 35(3), 440-444 (1997).
  19. Glaze, W. H., Kang, J., and Chapin, D. H., "The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation," Ozone: Sci. & Eng., 9(4), 335-352 (1987). https://doi.org/10.1080/01919518708552148
  20. Thomas, D., and Vanderschuren, J., "Modeling of $NO_x$ Absorption into Nitric Acid Solutions Containing Hydrogen Peroxide," Ind. Eng. Chem. Res., 36(8), 3315-3322 (1997). https://doi.org/10.1021/ie960436g