• Title, Summary, Keyword: $CaZr(BO_3)_2$

Search Result 6, Processing Time 0.044 seconds

Microwave Dielectric Properties of CaZr(BO3)2 Ceramics (CaZr(BO3)2 세라믹스의 마이크로웨이브 유전특성)

  • Nam, Myung-Hwa;Kim, Hyo-Tae;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5
    • /
    • pp.173-178
    • /
    • 2007
  • The microstructure and microwave dielectric properties of dolomite type borates, $CaZr(BO_3)_2$ ceramics prepared by conventional mixed oxide method were explored. The sintering temperature of $CaZr(BO_3)_2$ ceramics could be reduced from $1150^{\circ}C\;to\;925^{\circ}C$ with little amount of sintering additives. Microwave dielectric properties of 3 wt% $Bi_2O_3-CuO$ added $CaZr(BO_3)_2$ ceramics sintered at $925^{\circ}C$ were $K{\approx}10.4,\;Q{\times}f{\approx}80,000GHz\;and\;TCF{\approx}+2ppm/^{\circ}C$. Thus obtained LTCC tape was co-fired with Ag paste for compatibility test and revealed no sign of Ag reaction with the ceramics. Therefore, $CaZr(BO_3)_2$ ceramics is considered as a possible candidate material for low temperature co-fired multilayer devices.

Low Temperature Sintered $CaZr(BO_3)_2$ Microwave Dielectric Ceramics for LTCC Application ($CaZr(BO_3)_2$ 세라믹스의 저온 소결 및 마이크로웨이브 유전 특성)

  • Nam, Myoung-Hwa;Kim, Hyo-Tae;Kim, Jong-Hee;Mahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.259-259
    • /
    • 2007
  • The low temperature sintering of dolomite type borates, $CaZr(BO_3)_2$[CZB] ceramics and their microwave dielectric properties were investigated The sintering temperature of CZB ceramics could be reduced from $1150^{\circ}C$ to $925^{\circ}C$ by the addition of sintering additive. $CaZrO_3$, $ZrO_2$ and $CaB_2O_4$ second phases were found in the CZB ceramics. The syntheses, sintering properties, microstructures, and dielectricnproperties of dolomite-type borates were examined by XRD, thermal analysis, electron microscopy, network analyzer, and the results are discussed intensively. The compatibility with silver electrode was also explored.

  • PDF

Synthesis and luminescent properties of a new green $CaZrO_3:\;HO_{3+}$ long persistent phosphors (녹색 발광의 $CaZrO_3:\;HO_{3+}$ 축광성 형광체의 합성 및 발광 특성)

  • Park, Byeong-Seok;Choi, Jong-Keon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • Novel green long persistent phosphors of $CaZrO_3$ : $HO_{3+}$ have been synthesized at high temperature with weak reduction atmosphere by traditional solid state reaction method. The role of $H_3BO_3$ as flux and the suitable concentration of Ho as activator on the $CaZrO_3$ : $HO_{3+}$ long persistent phosphors has been investigated. Crystals of $HO_{3+}$ doped $CaZrO_3$ long persistent phosphores were characterized by fluorescence spectrophotometer and photoluminescence (PL). The main emission spectra of 546 nm peak was revealed through synthesizing at high temperature in $N_2$ gas atmosphere. The after glow emission spectra of $CaZrO_3$ : $HO_{3+}$ long persistent phosphores arise at 546 nm peak of narrow range. because that revealed pure green color. Green long persistent phosphors have been observed in the system for over 5 h after UV irradiation (254 nm). The main emission peak was ascribed to $HO_{3+}$ ions transition from $^5F_4$, $^5S_2{\to}^5I_3$, and the after glow may be ascribed to the trap centers in the $CaZrO_3$ host lattice.

Structural and Optical Properties of Yellow-Emitting CaGd2ZrSc(AlO4)3:Ce3+ Phosphor for Solid-State Lighting

  • Kim, Yoon Hwa;Kim, Bo Young;Viswanath, Noolu S.M.;Arunkumar, Paulraj;Im, Won Bin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.422-428
    • /
    • 2017
  • Single-phase yellow phosphor, $CaGd_{2-x}ZrSc(AlO_4)_3:xCe^{3+}$ ($CGZSA:Ce^{3+}$), possessing cubic symmetry with varied $Ce^{3+}$ concentrations, was synthesized using the solid-state reaction method. The samples were characterized using X-ray diffraction (XRD), excitation spectra, emission spectra, thermal quenching, and decay curves. The cubic phase of $CGZSA:Ce^{3+}$ phosphor was confirmed via XRD analysis. The photoluminescence spectra of $CGZSA:Ce^{3+}$ phosphor demonstrated that the phosphor could be excited at the wavelength of 440 nm; a broad yellow emission band was centered at 541 nm. These results indicate that the phosphors are adequately excited by blue light and have the potential to function as yellow-emitting phosphors for applications in white light-emitting diodes.

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics (비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교)

  • Jung, Seungwoon;Lim, Ji-Ho;Jung, Han-Bo;Ji, Sung-Yub;Choi, Seunggon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

A study on development of CRM by means of XRF analysis for fine ceramic ($BaTiO_3$) (티탄산바륨 소재의 XRF 분석용 CRM 개발에 관한 연구)

  • Kim, Young Man;Jeong, Chan Yee;Lim, Chang Ho;Song, Taek Yong;Lee, Dong Soo
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.382-391
    • /
    • 1996
  • In this study, 12 different chemical species of fine ceramic($BaTiO_3$) were synthesized as the standard materials for the fast and accurate measurements of X-ray fluorescence spectrometry. Samples were diluted to sixteen times with the filling compound ($Li_2B_4O_7+LiBO_2$) in order to remove the matrix effect, and to get the convenient storage and homogeneity of ingredients. The matrix effects among the ingredients were corrected by the empirical coefficient method based on the Lucas-Tooth and Price model. The standard curve on 12 standard materials containing 15 elements were obtained by using X-ray fluorescence spectrometry at three different laboratories. The correlation factors of BaO, PbO, SrO, $Fe_2O_3$, $La_2O_3$, $SnO_2$, ZnO, $ZrO_2$, CaO indicated the relati vely good agreement over 0.995 among the three different laboratories. $SiO_2$ and $Al_2O_3$ showed the poor linearity because of their low fluorescence intensities.

  • PDF