DOI QR코드

DOI QR Code

Structural and Optical Properties of Yellow-Emitting CaGd2ZrSc(AlO4)3:Ce3+ Phosphor for Solid-State Lighting

  • Kim, Yoon Hwa (School of Materials Science and Engineering and Optolelectronics Convergence Research Center, Chonnam National University) ;
  • Kim, Bo Young (School of Materials Science and Engineering and Optolelectronics Convergence Research Center, Chonnam National University) ;
  • Viswanath, Noolu S.M. (School of Materials Science and Engineering and Optolelectronics Convergence Research Center, Chonnam National University) ;
  • Arunkumar, Paulraj (School of Materials Science and Engineering and Optolelectronics Convergence Research Center, Chonnam National University) ;
  • Im, Won Bin (School of Materials Science and Engineering and Optolelectronics Convergence Research Center, Chonnam National University)
  • Received : 2017.07.03
  • Accepted : 2017.09.08
  • Published : 2017.09.30

Abstract

Single-phase yellow phosphor, $CaGd_{2-x}ZrSc(AlO_4)_3:xCe^{3+}$ ($CGZSA:Ce^{3+}$), possessing cubic symmetry with varied $Ce^{3+}$ concentrations, was synthesized using the solid-state reaction method. The samples were characterized using X-ray diffraction (XRD), excitation spectra, emission spectra, thermal quenching, and decay curves. The cubic phase of $CGZSA:Ce^{3+}$ phosphor was confirmed via XRD analysis. The photoluminescence spectra of $CGZSA:Ce^{3+}$ phosphor demonstrated that the phosphor could be excited at the wavelength of 440 nm; a broad yellow emission band was centered at 541 nm. These results indicate that the phosphors are adequately excited by blue light and have the potential to function as yellow-emitting phosphors for applications in white light-emitting diodes.

Keywords

References

  1. C. Feldmann, T. Justel, C. R. Ronda, and P. J. Schmidt, "Inorganic Luminescent Materials: 100 Years of Research and Application," Adv. Funct. Mater., 13 [7] 511-16 (2003). https://doi.org/10.1002/adfm.200301005
  2. K. S. Y. Shimizu, Y. Noguchi, and T. Moriguchi, "Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material"; US Patent 5,998,925, (July 29, 1999).
  3. G. Blasse and A. Bril, "A New Phosphor for Flying-Spot Cathode-ray Tubes for Color Television: Yellow-emitting $Y_3Al_5O_{12}$-$Ce^{3+}$," Appl. Phys. Lett., 11 [2] 53-55 (1967). https://doi.org/10.1063/1.1755025
  4. The Nobel Prize in Physics 2014. http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/. Accessed on 20/09/2017.
  5. J. C. Krupa and M. Queffelec, "UV and VUV Optical Excitations in Wide Band Gap Materials Doped with Rare Earth Ions: 4f-5d Transitions," J. Alloy. Compd., 250 [1-2] 287-92 (1997). https://doi.org/10.1016/S0925-8388(96)02725-9
  6. P. Dorenbos, "5d-level Energies of $Ce^{3+}$ and the Crystalline Environment. IV. Aluminates and "Simple" Oxides," J. Lumin., 99 [3] 283-99 (2002). https://doi.org/10.1016/S0022-2313(02)00347-2
  7. G. A. Novar and G. V. Grnns, "The Crystal Chemistry of the Silicate Garnets," Am. Mineral., 56 791-825 (1971).
  8. F. Euler and J. A. Bruce, "Oxygen Coordinates of Compounds with Garnet Structure," Acta Crystallogr., 19 [6] 971-78 (1965). https://doi.org/10.1107/S0365110X65004747
  9. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijima, "Photoluminescence and Crystal Structure of Green-Emitting $Ca_3Sc_2Si_3O_{12}:Ce^{3+}$ Phosphor for White Light Emitting Diodes," J. Electrochem. Soc., 154 [1] J35-38 (2007). https://doi.org/10.1149/1.2388856
  10. G. Blasse and A. Bril, "Investigation of Some $Ce^{3+}$-Activated Phosphors," J. Chem. Phys., 47 [12] 5139-45 (1967). https://doi.org/10.1063/1.1701771
  11. A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, "Crystal Chemistry and Luminescence of $Ce^{3+}$-Doped $Lu_2CaMg_2(Si,Ge)_3O_{12}$ and Its Use in LED Based Lighting," Chem. Mater., 18 [14] 3314-22 (2006). https://doi.org/10.1021/cm060898c
  12. X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo, and Y. Huang, "Novel Garnet-Structure $Ca_2GdZr_2(AlO_4)_3:Ce^{3+}$ Phosphor and Its Structural Tuning of Optical Properties," Inorg. Chem., 53 [13] 6607-14 (2014). https://doi.org/10.1021/ic500153u
  13. A. C. Larson and R. B. V. Dreele, "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Report LAUR 86-748, September 2004.
  14. N. E. Brese and M. O'Keeffe, "Bond-Valence Parameters for Solids," Acta Crystallogr. B, 47 [2] 192-97 (1991). https://doi.org/10.1107/S0108768190011041
  15. A. Yoshiasa, A. Nakatsuka, and M. Ohkawa, "EXAFS Study on the Short-Range Correlation of Vibrational Motion in the $Y_3Fe_{5-x}Ga_xO_{12}$ Garnet Solid Solution," Min. Jour., 19 [1] 21-32 (1997). https://doi.org/10.2465/minerj.19.21
  16. R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr. A, 32 [5] 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  17. D. J. Robbins, "The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of $Ce^{3+}$ in YAG," J. Electrochem. Soc., 126 [9] 1550-55 (1979). https://doi.org/10.1149/1.2129328
  18. G. Blasse and B. C. Grabmaier, Luminescent Materials; Vol. 1, pp. 70-90, Springer, Berlin Heidelberg, 1994.
  19. G. Blasse, "Energy Transfer In Oxidic Phosphors," Philips Res. Rep., 24 131-44 (1969).
  20. D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys., 21 [5] 836-50 (1953). https://doi.org/10.1063/1.1699044
  21. J. A. Mares and M. Nikl, "Energy Transfer, Fluorescence and Scinitillation Processes in Cerium-doped $RE^{3+}AlO_3$ Fast Scintillators," Acta Phys. Pol. A, 90 [1] 45-54 (1996). https://doi.org/10.12693/APhysPolA.90.45
  22. D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, "The Temperature Dependence of Rare-Earth Activated Garnet Phosphors: I. Intensity and Lifetime Measurements on Undoped and Ce-Doped $Y_3Al_5O_{12}$," J. Electrochem. Soc., 126 [7] 1213-20 (1979). https://doi.org/10.1149/1.2129245
  23. Y. H. Kim, P. Arunkumar, B. Y. Kim, S. Unithrattil, E. Kim, S.-H. Moon, J. Y. Hyun, K. H. Kim, D. Lee, J.-S. Lee, and W. B. Im, "A Zero-Thermal-Quenching Phosphor," Nat. Mater., 16 [5] 543-50 (2017). https://doi.org/10.1038/nmat4843
  24. J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, "Insight into the Thermal Quenching Mechanism for $Y_3Al_5O_{12}:Ce^{3+}$ through Thermoluminescence Excitation Spectroscopy," J. Phys. Chem. C, 119 [44] 25003-8 (2015). https://doi.org/10.1021/acs.jpcc.5b08828
  25. Y. Chen, B. Liu, C. Shi, G. Ren, and G. Zimmerer, "The Temperature Effect of $Lu_2SiO_5:Ce^{3+}$ Luminescence," Nucl. Instrum. Meth. A, 537 [1] 31-5 (2005). https://doi.org/10.1016/j.nima.2004.07.226
  26. C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, "Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects," J. Electrochem. Soc., 155 [6] B517-20 (2008). https://doi.org/10.1149/1.2898093

Cited by

  1. Cation-Size Mismatch as a Design Principle for Enhancing the Efficiency of Garnet Phosphors vol.32, pp.7, 2017, https://doi.org/10.1021/acs.chemmater.0c00095
  2. Up‐conversion phosphor plate for white lighting device using NIR excitation source vol.104, pp.2, 2017, https://doi.org/10.1111/jace.17397