• 제목/요약/키워드: $Ca^{2+}-binding$

검색결과 412건 처리시간 0.033초

Effect of Excess Calcium and Iron Supplement on Iron Bioavailability, Liver and Kidney Functions in Anemic Model Rats (칼슘과 철 보충제의 과다섭취가 빈혈모델 흰쥐의 체내 철 이용성 및 간과 신장기능에 미치는 영향)

  • 이종현;이연숙
    • Korean Journal of Community Nutrition
    • /
    • 제5권2호
    • /
    • pp.243-252
    • /
    • 2000
  • This study examined the effects of excess intake of calcium(Ca) and iron(Fe) supplements on iron bioavailability, liver and kidney functions in anemic model rats. Seven-week-old female rats were first fed and Fe-deficient diet for ten weeks, and then fed one of nine experimental diets for an additional eight weeks, containing three levels of Ca, normal (0.5%) or high(1.5%) or excess (2.5%) and three levels of Fe, normal(35ppm) or high(210 ppm) or excess(350ppm). In anemic model rats, serum Fe, total iron binding capacity(TIBC), hemogolin(Hb), hematocrit(Hct) and liver Fe contents were significantly decreased. Apparent Fe absorption significantly increased with increasing dietary Fe levels, and decreased with increasing dietary Ca levels. serum Fe concentration significantly increased in rats fed a high- and excess-Fe diet, and decreased in rats fed a excess-Ca diet. TIBC was decreawed in rats fed a excess-Ca diet, and transferrin saturation(%) increased in rats fed ahigh- and excess-Fe diet. Hb and Hct were decreased in rats fed an excess-Ca diet regardless of dietary Fe levels. Fe and thiobarbituric acid reactin gsubstance(TBARS) Contents of liver significantly increased in rats fed a high- and excess0-Fe diet, and decreased in rats fed a high- and excess-Ca diet. Fe content of the spleen showed similar results. Urinary creatinine and GFR increased in rats fed an excess-Ca diet regardless of dietary Fe levels. GOT, GPT and LDH were not significantly affected by dietary Ca and Fe levels. These results suggest that excess intake of Fe may increase liver Fe deposits and TBARS, and excess intake of Ca may decrease Fe bioavailability and kidney function leading to potential health problems in anemic model rats.

  • PDF

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

Characteristics of Purinergic Receptor Expressed in 3T3-L1 Preadipocytes

  • Lee, Hyung-Joo;Baik, Joon-Heum;Kim, Min-Jeong;Kim, Na-Hyun;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • 제15권4호
    • /
    • pp.319-326
    • /
    • 2009
  • Extracellular ATP elicits diverse physiological effects by binding to the G-protein-coupled P2Y receptors on the plasma membrane. In addition to the short-term effects of extracellular nucleotides on cell functions, there is evidence that such purinergic signalling can have long-term effects on cell proliferation, differentiation and death. The 3T3-L1 cell line derived from mouse embryo is a well-established and commonly utilized in vitro model for adipocytes differentiation and function. However, the distributions and roles of P2Y subtypes are still unknown in the preadipocyte. In this study, we identified the distributions and roles of P2Y subtypes in preadipocyte using $Ca^{2+}$ imaging and realtime PCR. ATP increased the $[Ca^{2+}]_i$ in a concentration-dependent manner. ATP increased $Ca^{2+}$ in absence and/or presence of extracellular $Ca^{2+}$. Suramin, non-selective P2Y blocker, largely blocked the ATP-induced $Ca^{2+}$ response. U73122, a PLC inhibitor, completely inhibited $Ca^{2+}$ mobilization in 3T3-L1 cells. The mRNA expression by realtime PCR of P2Y subtypes was $P2Y_2:P2Y_5:P2Y_6=1.0:12.5:0.3$. In conclusion, we showed that $P2Y_5$ receptor is a dominant purinergic receptor in preadipocytes, and multiple P2Y receptors could involve in differentiation and migration via regulating of intracellular calcium concentration.

  • PDF

Isolation and Characterization of Pathogen-Inducible Putative Zinc Finger DNA Binding Protein from Hot Pepper Capsicum annuum L.

  • Oh, Sang-Keun;Park, Jeong-Mee;Jung, Young-Hee;Lee, Sanghyeob;Kim, Soo-Yong;Eunsook Chung;Yi, So-Young;Kim, Young-Cheol;Seung, Eun-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.79.2-80
    • /
    • 2003
  • To better understand plant defense responses against pathogen attack, we identified the transcription factor-encoding genes in the hot pepper Capsicum annuum that show altered expression patterns during the hypersensitive response raised by challenge with bacterial pathogens. One of these genes, Ca1244, was characterized further. This gene encodes a plant-specific Type IIIA - zinc finger protein that contains two Cys$_2$His$_2$zinc fingers. Ca1244 expression is rapidly and specifically induced when pepper plants are challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generates weak Ca1244 expression. Ca1244 expression is also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene releasing compound. Whereas, salicylic acid and methyl jasmonate had moderate effects. Pepper protoplasts expressing a Ca1244-smGFP fusion protein showed Ca1244 localizes in the nucleus. Transgenic tobacco plants overexpressing Ca1244 driven by the CaMV 355 promoter show increased resistance to challenge with a tobacco-specific bacterial pathogen. These plants also showed constitutive upregulation of the expression of multiple defense-related genes. These observations provide the first evidence that an Type IIIA - zinc finger protein, Ca1244, plays a crucial role in the activation of the pathogen defense response in plants.

  • PDF

Suppressive Effects of Divalent Cations on Self-splicing Inhibition by Spectinomycin of Group 1 Intron RNA

  • Park, In-Kook
    • Journal of Microbiology
    • /
    • 제37권4호
    • /
    • pp.243-247
    • /
    • 1999
  • Effects of divalent cations on self-splicing inhibition by the antibiotic spectinomycin of the phage T4 thymidylate synthase intron (td) have been investigated. $Ca^{2+}$ ion at 1mM concentration suppressed splicing inhibition of spectinomycin by 10% and 50 ${\mu}M\;Co^{2+}$ ion also suppressed splicing inhibition of specinomycin by 10%. $Mg^{2+}$ ion at 6 mM concentration decreased splicing inhibition of spectinomycin by 42% while $Mn^{2+}$ ion decreased the splicing inhibition by 10%. $Zn^{2+}$ ion at 10 uM concentration lowered the splicing inhibition by spectinomycin of 15%. Of all divalent cations tested, $Mg^{2+}$ ion was the most effective in suppressing splicing inhibition by specinomycin whereas $Ca^{2+}$ ion was the least effective. The results suggest that spectinomycin may interact with specific and functional $Mg^{2+}$-binding sites within intron RNA that lead to a displacement of $Mg^{2+}$ essential for catalytic activity.

  • PDF

Radiolabeling of NOTA and DOTA with Positron Emitting $^{68}$Ga and Investigation of In Vitro Properties (양전자 방출핵종 $^{68}$Ga을 이용한 NOTA와 DOTA의 표지 및 시험관내 특성 연구)

  • Jeong, Jae-Min;Kim, Young-Ju;Lee, Yun-Sang;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권4호
    • /
    • pp.330-336
    • /
    • 2009
  • Purpose: We established radiolabeling conditions of NOTA and DOTA with a generator-produced PET radionuclide $^{68}$Ga and studied in vitro characteristics such as stability, serum protein binding, octanol/water distribution, and interference with other metal ions. Materials and Methods: Various concentrations of NOTA 3HCl and DOTA 4HCl were labeled with 1 mL $^{68}$GaCl$_3$ (0.18$\sim$5.75 mCi in 0.1 M HCl in various pH. NOTA 3HCl (0.373 mM) was labeled with $^{68}$GaCl$_3$(0.183$\sim$0.232 mCi/0.1 M HCl 1.0 mL) in the presence of CuCl$_2$, FeCl$_2$, InCl$_3$, FeCl$_3$, GaCl$_3$, MgCl$_2$ or CaCl$_2$ (0$\sim$6.07 mM) at room temperature. The labeling efficiencies of $^{68}$Ga-NOTA and $^{68}$Ga-DOTA were checked by ITLC-SG using acetone or saline as mobile phase. Stabilities, protein bindings, and octanol distribution coefficients of the labeled compounds also were investigated. Results: $^{68}$Ga-NOTA and $^{68}$Ga-DOTA were labeled optimally at pH 6.5 and pH 3.5, respectively, and the chelates were stable for 4 hr either in the reaction mixture at room temperature or in the human serum at 37$^{\circ}C$. NOTA was labeled at room temperature while DOTA required heating for labeling. $^{68}$Ga-NOTA labeling efficiency was reduced by CuCl$_2$, FeCl$_2$, InCl$_2$, FeCl$_3$ or CaCl$_3$, however, was not influenced by MgCl$_2$ or CaCl$_2$. The protein binding was low (2.04$\sim$3.32%). Log P value of $^{68}$Ga-NOTA was -3.07 indicating high hydrophilicity. Conclusion: We found that NOTA is a better bifunctional chelating agent than DOTA for $^{68}$Ga labeling. Although, $^{68}$Ga-NOTA labeling is interfered by various metal ions, it shows high stability and low serum protein binding.

Synthesis and Secretion of Mutant Mannose-Binding Lectin (돌연변이 Mannose-binding Lectin 합성과 세포 병리적 연구)

  • Jang, Ho-Jung;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • 제23권3호
    • /
    • pp.347-354
    • /
    • 2013
  • Innate immunity is the ability to differentiate infectious agents from self. The innate immune system is comprised of a complicated network of recognition and effector molecules that act together to protect the host in the early stage of an infectious challenge. Mannose-binding lectin (MBL or mannose-binding protein, MBP) belongs to the family of $Ca^{2+}$-dependent lectins (C-type lectin with a collagen-like domain), which are considered an important component of innate immunity. While it is associated with increased risk and severity of infections and autoimmunity, the most frequent immuno-deficiency syndrome was reported to be low MBL level in blood. Deficiency of human MBL is caused by mutations in the coding region of the MBL gene. Rat homologue gene of human MBL gene was used to study functions of wild type and mutant MBL proteins. Although extensive studies have yielded the structural information of MBL, the functions of MBL, especially mutant MBL, still require investigation. We previously reported the cloning of rat wild-type MBL gene and the production of a truncated form of MBL protein and its antibody. Here, we present the cloning of mutant MBL cDNA in collagen-like domain (R40C, G42D, and G45E) using site-directed mutagenesis and differential behaviors of wild type and mutant MBL in cells. The major difference between wild type and mutant MBL was that while wild type MBL was secreted, mutant MBL was inhibited for secretion, retained in endoplasmic reticulum, and still functioned as a lectin.

Structural and Functional relationship of the recombinant catalytic subunit of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 한국식품위생안전성학회 2002년도 춘계학술발표대회 및 심포지움
    • /
    • pp.215-215
    • /
    • 2002
  • Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major funational domains such as dihydrplipoamide adetyltransferase(E2)-binding domain, regulatory subunit of PDP(PDP)r-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase(rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPc binds to the inner lipoyl domain (L2) of E2 of ppyruvate dehydrogenase complex (PDC) in the presence of Ca+2, not under EGTA. PDPc was limited-proteolysed by typsin, chymotypsin, Arg-C, and elastase at pH 7.0 and 30C and N-terminal analysis of the fragments was done. Chymotrypsin, trypsin, and elastase made two major fragments: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx.10 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

Varietal Difference in Protein, Carbohydrate, P,K,Ca and Mg Content of Naked Barley (과맥품종별 단백질(蛋白質) 탄수화물(炭水化物) 및 P.K.Ca 및 Mg 함량(含量))

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • 제19권1호
    • /
    • pp.31-35
    • /
    • 1976
  • Fifteen naked barley cultivars including radiation breeding lines from three places were analized for crude protein, carbohydrates, P, K, Ca, Mg and tested protein by dye binding method and biuret method. Their content and simple correlation analyses among them were as follows. 1. Protein content was 7.67 for average (max. 10.3 in Baegdong, min. 6.0 in Bangju) that was lower than in milled barley and had significant (at p=0.01) correlation with dye binding capacity (r=0.769) and biuret absorbance (r=0.616). 2. Protein content also had significant correlation with $P_2O_5$(r=0.607, p=0.01) and with MgO(r=0.498, p=0.05). 3. There was great difference in protein content among radiation breeding lines(max. 8.40, min. 6.75%). 4. Naked barley appeared to be lower in carbohydrate content but higher in crude ash to compare with milled barley. 5. There was significant correlation(r=0.560, p=0.01) between Ca and K, indicating competition in uptake or translocation to grain. 6. Carbohydrate content showed the highest negative correlation with protein content but it was not significant. 7. The low protein variety (Bangju) showed higher yield than the high protein one (Baegdong) both with (16%) and without (48%) fertilizers.

  • PDF