DOI QR코드

DOI QR Code

Synthesis and Secretion of Mutant Mannose-Binding Lectin

돌연변이 Mannose-binding Lectin 합성과 세포 병리적 연구

  • Jang, Ho-Jung (Department of Clinical Laboratory Science, Dong-Eui University) ;
  • Chung, Kyung Tae (Department of Clinical Laboratory Science, Dong-Eui University)
  • 장호정 (동의대학교 임상병리학과) ;
  • 정경태 (동의대학교 임상병리학과)
  • Received : 2013.02.19
  • Accepted : 2013.03.26
  • Published : 2013.03.30

Abstract

Innate immunity is the ability to differentiate infectious agents from self. The innate immune system is comprised of a complicated network of recognition and effector molecules that act together to protect the host in the early stage of an infectious challenge. Mannose-binding lectin (MBL or mannose-binding protein, MBP) belongs to the family of $Ca^{2+}$-dependent lectins (C-type lectin with a collagen-like domain), which are considered an important component of innate immunity. While it is associated with increased risk and severity of infections and autoimmunity, the most frequent immuno-deficiency syndrome was reported to be low MBL level in blood. Deficiency of human MBL is caused by mutations in the coding region of the MBL gene. Rat homologue gene of human MBL gene was used to study functions of wild type and mutant MBL proteins. Although extensive studies have yielded the structural information of MBL, the functions of MBL, especially mutant MBL, still require investigation. We previously reported the cloning of rat wild-type MBL gene and the production of a truncated form of MBL protein and its antibody. Here, we present the cloning of mutant MBL cDNA in collagen-like domain (R40C, G42D, and G45E) using site-directed mutagenesis and differential behaviors of wild type and mutant MBL in cells. The major difference between wild type and mutant MBL was that while wild type MBL was secreted, mutant MBL was inhibited for secretion, retained in endoplasmic reticulum, and still functioned as a lectin.

선천성 면역은 감염성 매개체를 자기(self)로부터 변별할 수 있다. 선천성 면역은 감염 초기에 숙주인 자기를 보호하는 인식분자와 효과인자들로 구성되어 있다. Mannose 결합 렉틴(Mannose-binding lectin, MBL)은 $Ca^{2+}$ 의존형 렉틴에 속하며, 콜라겐 유사 domain을 함유하는 C-type 렉틴으로 선천성 면역의 중요한 분자이다. 혈액내 낮은 MBL 농도는 면역결핍 증후군을 나타내며 감염에 대한 심각한 위험성을 초래한다. 사람의 MBL 결핍증은 coding 영역의 돌연변이에 의해 나타나며, 이 돌연변이의 영향을 연구하기 위해 쥐의 상동성 유전자인 MBL-A를 이용하고 있다. 돌연변이 MBL의 기능적, 세포 생리적 연구를 위해 선행연구에서 rat wild type MBL-A 유전자를 클로닝하였으며, 본 연구에서 이 유전자에 콜라겐 유사 domain에서 발견된 세 가지 돌연변이, R40C, G42D, G45E를 site-directed mutagenesis 방법으로 모두 도입하였다. 세 가지 돌연변이가 존재하는 MBL 단백질은 정상 MBL과 마찬가지로 세포 내에서 정상적으로 발현되었으며, 여전히 렉틴 기능을 가지고 있었다. 이는 세 가지 돌연변이가 렉틴 기능을 나타내는 C-말단 쪽의 carbohydrate recognition domain에는 구조적으로, 또한 기능적으로도 영향을 미치지 않는다는 결과이다. 그러나 이 돌연변이는 MBL 단백질이 세포 밖으로 분비되는 것을 방해하였으며, 그 결과로 소포체 내에 잔류하여 소포체 망상구조(endoplasmic reticulumn network)에 커다란 손상을 주며 비정상적인 형체를 초래하였다. 이 같은 결과는 돌연변이 MBL에 의해 나타난 세포 내 병리현상의 새로운 발견으로 향후 MBL의 구조 형성과 분비 연구에 기여를 할 것으로 생각된다.

Keywords

References

  1. Agah, A., Montalto, M. C., Young, K. and Stahl, G. L. 2001. Isolation, cloning and functional characterization of porcine mannose-binding lectin. Immunology 102, 338-343. https://doi.org/10.1046/j.1365-2567.2001.01191.x
  2. Collard, C. D., Vakeva, A., Morrissey, M. A., Agah, A., Rollins, S. A., Reenstra, W. R., Buras, J. A., Meri, S. and Stahl, G. L. 2000. Complement activation after oxidative stress: role of the lectin complement pathway. Am J Patho 156, 1549-1556. https://doi.org/10.1016/S0002-9440(10)65026-2
  3. Drickamer, K., Dordal, M. S. and Reynolds, L. 1986. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem 261, 6878-6887.
  4. Ezekowitz, R. A. Day, L. E. and Herman, G. A. 1988. A human mannose binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins. J Exp Med 167, 1034-1046. https://doi.org/10.1084/jem.167.3.1034
  5. Ezekowitz, R. A., Kuhlman, M., Groopman, J. E. and Byrn, R. A. 1989. A human serum mannose-binding protein inhibits in vitro infection by the human immunodeficiency virus. J Exp Med 169, 185-196. https://doi.org/10.1084/jem.169.1.185
  6. Faure, E., Equils, O., Sieling, P. A., Thomas, L., Zhang, F. X., Kirschning, C. J., Polentarutti, N., Muzio, M. and Arditi, M. 2000. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275, 11058-11063. https://doi.org/10.1074/jbc.275.15.11058
  7. Hansen, T. K. 2005. Mannose-binding lectin (MBL) and vascular complications in diabetes. Horm Metab Res 37, 95-102. https://doi.org/10.1055/s-2005-861372
  8. Hartshorn, K. L., Sastry, K., White, M. R., Anders, E. M., Super, M., Ezekowitz, R. A. and Tauber, A. I. 1993. Human mannose-binding protein functions as an opsonin for influenza A viruses. J Clin Invest 91, 1414-1420. https://doi.org/10.1172/JCI116345
  9. Hirano, M., Ma, B. Y., Kawasaki, N., Okimura, K., Baba, M., Nakagawa, T., Miwa, K., Oka, S. and Kawasaki, T. 2005. Mannan-binding protein blocks the activation of metalloproteases meprin alpha and beta. J Immunol 175, 3177-3185. https://doi.org/10.4049/jimmunol.175.5.3177
  10. Hisano, S., Matsushita, M., Fujita, T., Endo, Y. and Takebayashi, S. 2001. Mesangia. IgA2 deposits and lectin pathway-mediated complement activation in IgA glomerulonephritis. Am J Kidney Dis 38, 1082-1088. https://doi.org/10.1053/ajkd.2001.28611
  11. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. and Ezekowitz, R. A. 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  12. Honma, T., Kuroki, Y., Tsunezawa, W., Ogasawara, Y., Sohma, H., Voelker, D. R. and Akino, T. 1997. The mannose- binding protein A region of glutamic acid185-alanine221 can functionally replace the surfactant protein A region of glutamic acid195- phenylalanine228 without loss of interaction with lipids and alveolar type II cells. Biochemistry 36, 7176-7184. https://doi.org/10.1021/bi962967e
  13. Iwasaki, A. and Medzhitov, R. 2004. Toll-like receptor control of the adaptive immune responses. Nat Immunol 5, 987-995. https://doi.org/10.1038/ni1112
  14. Janeway, C. A. Jr. and Medzhitov, R. 2002. Innate immune recognition. Annu Rev Immunol 20, 197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  15. Jensen, P. H., Weilguny, D., Matthiesen, F., Mcguire, K. A., Shi, L. and Hojrup, P. 2005. Characterization of the oligomer structure of recombinant human mannan binding lectin. J Biol Chem 280, 11043-11051. https://doi.org/10.1074/jbc.M412472200
  16. Kawai, T., Suzuki, Y., Eda, S., Ohtani, K., Kase, T., Sakamoto, T., Uemura, H. and Wakamiya, N. 1998. Molecular and biological characterization of rabbit mannan-binding protein. Glycobiology 8, 237-244. https://doi.org/10.1093/glycob/8.3.237
  17. Kielgast, S., Thiel, S., Henriksen, T. B., Bjerke, T., Olsen, J. and Jensenius, J. C. 2003. Umbilical cord mannan-binding lectin and infections in early childhood. Scand J Immunol 57, 167-172. https://doi.org/10.1046/j.1365-3083.2003.01202.x
  18. Kilpatrick, D. C. 1998. Phospholipid-binding activity of human mannan-binding lectin. Immunol Lett 61, 191-195. https://doi.org/10.1016/S0165-2478(98)00031-5
  19. Kojima, M., Presanis, J. S. and Sim, R. B. 2003. The mannose binding lectin (MBL) route for activation of complement. Adv Exp Med Biol 535, 229-250. https://doi.org/10.1007/978-1-4615-0065-0_15
  20. Kuroki, Y., Honma, T., Chiba, H., Sano, H., Saitoh, M., Ogasawara, Y., Sohma, H. and Akino, T. 1997. A novel type of binding specificity to phospholipids for rat mannose- binding proteins isolated from serum and liver. FEBS Lett 414, 387-392. https://doi.org/10.1016/S0014-5793(97)01022-3
  21. Kwon, H. M., Park, J. A., Choi, B. T., Choi, Y. H. and Chung, K. T. 2009. Recombinant mannose-binding lectin protein and anti-mannose-binding lectin polyclonal antibody production. J Life Sci 19, 284-288. https://doi.org/10.5352/JLS.2009.19.2.284
  22. Liu, H., Jensen, L., Hansen, S., Petersen, S. V., Takahashi, K., Ezekowitz, A. B., Hansen, F. D., Jensenius, J. C. and Thiel, S. 2001. Characterization and quantification of mouse mannan-binding lectins (MBL-A and MBL-C) and study of acute phase responses. Scand J Immunol 53, 489-497. https://doi.org/10.1046/j.1365-3083.2001.00908.x
  23. Ma, Y., Uemura, K., Oka, S., Kozutsumi, Y., Kawasaki, N. and Kawasaki, T. 1999. Antitumor activity of mannan-binding protein in vivo as revealed by a virus expression system, mannan-binding protein dependent cell-mediated cytotoxicity. Proc Natl Acad Sci USA 96, 371-375. https://doi.org/10.1073/pnas.96.2.371
  24. Malhotra, R., Wormald, M. R., Rudd, P. M., Fischer, P. B., Dwek, R. A. and Sim, R. B. 1995. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1, 237-243. https://doi.org/10.1038/nm0395-237
  25. Medzhitov, R. and Janeway, C. A. Jr. 2002. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300. https://doi.org/10.1126/science.1068883
  26. Muto, S., Sakuma, K., Taniguchi, A. and Matsumoto, K. 1999. Human mannose-binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biol Pharm Bull 22, 347-352. https://doi.org/10.1248/bpb.22.347
  27. Palaniyar, N., Nadesalingam, J. and Reid, K. B. 2003. Innate immune collectins bind nucleic acids and enhance DNA clearance in vitro. Ann NY Acad Sci 1010, 467-470. https://doi.org/10.1196/annals.1299.084
  28. Palaniyar, N., Nadesalingam, J., Clark, H., Shih, M. J., Dodds, A. W. and Reid, K. B. 2004. Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J Biol Chem 279, 32728-32736. https://doi.org/10.1074/jbc.M403763200
  29. Peterslund, N. A., Koch, C., Jensenius, J. C. and Thiel, S., 2001. Association between deficiency of mannose-binding lectin and severe infections after chemotherapy. Lancet 358, 637-638. https://doi.org/10.1016/S0140-6736(01)05785-3
  30. Roos, A., Bouwman, L. H., van, Gijlswijk-Janssen D. J., Faber-Krol M. C., Stahl, G. L., and Daha, M. R. 2001. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167, 2861-2868. https://doi.org/10.4049/jimmunol.167.5.2861
  31. Sastry, K., Herman, G. A., Day, L., Deignan, E., Bruns, G., Morton, C. C. and Ezekowitz, R. A. 1989. The human mannose- binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med 170, 1175-1189. https://doi.org/10.1084/jem.170.4.1175
  32. Sheriff, S., Chang, C. Y. and Ezekowitz, R. A. 1994. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol 1, 789-794. https://doi.org/10.1038/nsb1194-789
  33. Takahashi, K., Ip, W. E., Michelow, I. C. and Ezekowitz, R. A. 2006. The mannose-binding lectin, a prototypic pattern recognition molecule. Curr Opin Immunol 18, 16-23. https://doi.org/10.1016/j.coi.2005.11.014
  34. Taylor, M. E., Brickell, P. M., Craig, R. K. and Summerfield, J. A. 1989. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J 262, 763-771.
  35. Thorarinsdottir, H. K., Ludviksson, B. R., Vikingsdottir, T., Leopoldsdottir, M. O., Ardal, B., Jonsson, T., Valdimarsson, H. and Arason, G. J. 2005. Childhood levels of immunoglobulins and mannan binding lectin in relation to infections and allergy. Scand J Immunol 61, 466-474. https://doi.org/10.1111/j.1365-3083.2005.01588.x
  36. Weis, W. I., Drickamer, K. and Hendrickson, W. A. 1992. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127-134. https://doi.org/10.1038/360127a0