Characteristics of Purinergic Receptor Expressed in 3T3-L1 Preadipocytes

  • Lee, Hyung-Joo (Department of Physiology, Yonsei University, Wonju College of Medicine) ;
  • Baik, Joon-Heum (Department of Physiology, Yonsei University, Wonju College of Medicine) ;
  • Kim, Min-Jeong (Department of Physiology, Yonsei University, Wonju College of Medicine) ;
  • Kim, Na-Hyun (Department of Basic Nursing Science, College of Nursing, Keimyung University) ;
  • Kong, In-Deok (Department of Physiology, Yonsei University, Wonju College of Medicine)
  • ;
  • ;
  • ;
  • ;
  • 공인덕 (연세대학교 원주의과대학 생리학교실)
  • Published : 2009.12.31

Abstract

Extracellular ATP elicits diverse physiological effects by binding to the G-protein-coupled P2Y receptors on the plasma membrane. In addition to the short-term effects of extracellular nucleotides on cell functions, there is evidence that such purinergic signalling can have long-term effects on cell proliferation, differentiation and death. The 3T3-L1 cell line derived from mouse embryo is a well-established and commonly utilized in vitro model for adipocytes differentiation and function. However, the distributions and roles of P2Y subtypes are still unknown in the preadipocyte. In this study, we identified the distributions and roles of P2Y subtypes in preadipocyte using $Ca^{2+}$ imaging and realtime PCR. ATP increased the $[Ca^{2+}]_i$ in a concentration-dependent manner. ATP increased $Ca^{2+}$ in absence and/or presence of extracellular $Ca^{2+}$. Suramin, non-selective P2Y blocker, largely blocked the ATP-induced $Ca^{2+}$ response. U73122, a PLC inhibitor, completely inhibited $Ca^{2+}$ mobilization in 3T3-L1 cells. The mRNA expression by realtime PCR of P2Y subtypes was $P2Y_2:P2Y_5:P2Y_6=1.0:12.5:0.3$. In conclusion, we showed that $P2Y_5$ receptor is a dominant purinergic receptor in preadipocytes, and multiple P2Y receptors could involve in differentiation and migration via regulating of intracellular calcium concentration.

Keywords

References

  1. Abbracchio MP, Burnstock G. Purinergic signaling: Pathophysiological roles. Jpn J Pharmacol. 1998. 78: 113-145. https://doi.org/10.1254/jjp.78.113
  2. Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, et al. Characterization of the UDPglucose receptor(re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci. 2003. 24: 52-55. https://doi.org/10.1016/S0165-6147(02)00038-X
  3. Berchtold S, Ogilvie AL, Bogdan C, Mühl-Zürbes P, Ogilvie A, Schuler G, Steinkasserer A. Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett. 1999. 458: 424-428. https://doi.org/10.1016/S0014-5793(99)01197-7
  4. Burnstock G. The past, present, and future of purine nucleotides as signaling molecules. Neuropharmacology. 1997. 36: 1127-1139. https://doi.org/10.1016/S0028-3908(97)00125-1
  5. Burnstock G. Purine and Pyrimidine receptors. Cell Mol Life Sci. 2007. 64: 1471-1483. https://doi.org/10.1007/s00018-007-6497-0
  6. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Annal Biochem. 1987. 162: 156-159.
  7. Crandall DL, Busler DE, McHendry-Rinde B, Groeling TM, Kral JG. Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab. 2000. 85: 2609-2614. https://doi.org/10.1210/jc.85.7.2609
  8. Fries JE, Wheeler-Schilling TH, Guenther E, Kohler K. Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina. Invest Ophthalmol Vis Sci. 2004. 45: 3410-3414. https://doi.org/10.1167/iovs.04-0141
  9. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998. 78: 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  10. Halperin ML, Mak ML, Taylor WM. Control of glucose transport in adipose tissue of the rat: role of insulin, ATP and intracellular metabolites. Can J Biochem. 1978. 56: 708-712. https://doi.org/10.1139/o78-106
  11. Hashimoto N, Robinson FW, Shibata Y, Flanagan JE, Kono T. Diversity in the effects of extracellular ATP and adenosine on the cellular processing and physiologic actions of insulin in rat adipocytes. J Biol Chem. 1987. 262: 15026-15032.
  12. Ho M, Foxall S, Higginbottom M, Donofrio DM, Liao J, Richardson PJ, Maneuf YP. Leptin-mediated inhibition of the insulin-stimulated increase in fatty acid uptake in differentiated 3T3-L1 adipocytes. Metabol Clin Exp. 2006. 55: 8-12. https://doi.org/10.1016/j.metabol.2005.06.013
  13. Ihara H, Hirukawa K, Goto S, Togari A. ATP-stimulated interleukin-6 synthesis through P2Y receptors on human osteoblasts. Biochem Biophys Res Commun. 2005. 326: 329-334. https://doi.org/10.1016/j.bbrc.2004.11.037
  14. Janssens R, Boeynaems JM, Godart M, Communi D. Cloning of a human heptahelical receptor closely related to the P2Y5 receptor. Biochem Biophys Res Comm. 1997. 236: 106-112. https://doi.org/10.1006/bbrc.1997.6895
  15. Kim CS, Kawada T, Yoo H, Kwon BS, Yu R. Macrophage inflammatory protein-related protein-2, a novel CC chemokine, can regulate preadipocyte migration and adipocyte differentiation. FEBS Lett. 2003. 548: 125-130. https://doi.org/10.1016/S0014-5793(03)00728-2
  16. Kim DR, Ahn SW, Park QS, Kong ID. Regulation of nicotinic acetylcholine receptor by tyrosine kinase in autonomic major pelvic ganglion neurons. J Exp Biomed Sci. 2007. 13: 119-125.
  17. Kim DR, Kong ID. Characteristics of purinergic receptors expressed in human retinoblastoma cells. J Exp Biomed Sci. 2007. 13: 333-339.
  18. Kelly KL, Deeney JT, Corkey BE. Cytosolic free calcium in adipoytes. J Biol Chem. 1989. 264: 12754-12757.
  19. von Kugelgen I. Pharmacological profiles of cloned mammalian P2Y receptor subtypes. Pharmacol Ther. 2006. 110: 415-432. https://doi.org/10.1016/j.pharmthera.2005.08.014
  20. Lee H, Jun DJ, Suh BC, Choi BH, Lee JH, Do MS, Suh BS, Ha HJ, Kim KT. Dual Roles of P2 Purinergic Receptors in Insulin-stimulated Production and Lipolysis in Differentiated Rat White Adipocytes Leptin. J Bio Chem. 2005. 280: 28556-28563. https://doi.org/10.1074/jbc.M411253200
  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001. 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  22. Murakami M, Shiraishi A, Tabata K, Fujita N Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophysi Res. 2008. 371: 707-712. https://doi.org/10.1016/j.bbrc.2008.04.145
  23. Omatsu-Kanbe M, Shibata M, Yamamoto T, Isono T, Matsuura H. Actin filaments play a permissive role in the inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes. Biochem J. 2004. 381(Pt 2): 389-396. https://doi.org/10.1042/BJ20040378
  24. Omatsu-Kanbe M, Inoue K, Fujii Y, Yamamoto T, Isono T, Fujita N, Matsuura H. Effect of ATP on preadipocyte migration and adipocyte differentiation by activating P2Y receptors in 3T3-L1 cells. Biochem J. 2006. 393: 171-180. https://doi.org/10.1042/BJ20051037
  25. Otto TC, Lane MD. Adipose Development: From Stem Cell to Adipocyte. Crit Rev Biochem Mol Biol. 2005. 40: 229-242. https://doi.org/10.1080/10409230591008189
  26. Pappone PA, Lee SC. Purinergic receptor stimulation increases membrane trafficking in brown adipocytes. J Gen Physiol. 1996. 108: 393-404. https://doi.org/10.1085/jgp.108.5.393
  27. Pasternack SM, von Kügelgen I, Aboud KA, Lee YA, Rüschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nurnberg P, Nothen MM, Betz RC. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet. 2008. 40: 329-334. https://doi.org/10.1038/ng.84
  28. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998. 50: 413-492.
  29. Sak K, Webb TE. A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys. 2002. 397: 131-136. https://doi.org/10.1006/abbi.2001.2616
  30. Schmidt M, Loffler G. Induction of aromatase activity in human adipose tissue tromal cells by extracellular nucleotides. Evidence for P2-purinoceptors in adipose tissue. Eur J Biochem. 1998. 252: 147-154. https://doi.org/10.1046/j.1432-1327.1998.2520147.x
  31. Tamura S, Dubler RE, Larner J. Stimulation of maximal intracellular insulin action on glycogen synthase by preincubation of adipocytes with adenosine 5-triphosphate. J Biol Chem. 1983. 258: 719-724.
  32. Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes. 1999. 13: 2231-2241. https://doi.org/10.1101/gad.13.17.2231
  33. Wilson SM, Barsoum MJ, Wilson BW, Pappone PA. Purine nucleotides modulate proliferation of brown fat preadipocytes. Cell Prolif. 1999. 32: 131-140. https://doi.org/10.1046/j.1365-2184.1999.32230131.x
  34. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem. 2009. 284: 17731-17741. https://doi.org/10.1074/jbc.M808506200
  35. Yoon MJ, Lee HJ, Kim JH, Kim DK. Extracellular ATP induces apoptotic signaling in human monocyte leukemic cells, HL-60 and F-36P. Arch Pharm Res. 2006. 29: 1032-1041. https://doi.org/10.1007/BF02969288