• Title/Summary/Keyword: $C_4$-precursors

Search Result 313, Processing Time 0.029 seconds

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Functional Expression and Characterization of Acetyl Xylan Esterases CE Family 7 from Lactobacillus antri and Bacillus halodurans

  • Kim, Min-Jeong;Jang, Myoung-Uoon;Nam, Gyeong-Hwa;Shin, Heeji;Song, Jeong-Rok;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Acetyl xylan esterase (AXE; E.C. 3.1.1.72) is one of the accessory enzymes for xylan degradation, which can remove the terminal acetate residues from xylan polymers. In this study, two genes encoding putative AXEs (LaAXE and BhAXE) were cloned from Lactobacillus antri DSM 16041 and Bacillus halodurans C-125, and constitutively expressed in Escherichia coli. They possess considerable activities towards various substrates such as p-nitrophenyl acetate, 4-methylumbelliferyl acetate, glucose pentaacetate, and 7-amino cephalosporanic acid. LaAXE and BhAXE showed the highest activities at pH 7.0 and 8.0 at 50℃, respectively. These enzymes are AXE members of carbohydrate esterase (CE) family 7 with the cephalosporine-C deacetylase activity for the production of antibiotics precursors. The simultaneous treatment of LaAXE with Thermotoga neapolitana β-xylanase showed 1.44-fold higher synergistic degradation of beechwood xylan than the single treatment of xylanase, whereas BhAXE showed no significant synergism. It was suggested that LaAXE can deacetylate beechwood xylan and enhance the successive accessibility of xylanase towards the resulting substrates. The novel LaAXE originated from a lactic acid bacterium will be utilized for the enzymatic production of D-xylose and xylooligosaccharides.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

Pore Structure and Characteristics of Hollow Spherical Carbon Foam According to Carbonization Temperature and Re-immersion Treatment (탄화온도 및 재담금 처리에 따른 중공형 탄소다공체의 기공구조 및 특성)

  • Yi, Eunju;Lee, Changwoo;Kim, Yangdo;Rhyim, Youngmok
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2013
  • Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study ($700^{\circ}C$ to $850^{\circ}C$). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at $800^{\circ}C$ for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.

Synthesis and Electrochemical Performance of Li2MnSiO4 for Lithium Ion Battery Prepared by Amorphous Silica Precusor (비정질 실리콘 산화물을 이용한 리튬망간실리콘산화물의 합성 및 전기화학적 특성 평가)

  • Jin, Yun-Ho;Lee, Kun-Jae;Kang, Lee-Seung;Jung, Hang-Chul;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2012
  • Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.

Role of HCl in Atomic Layer Deposition of TiO2 Thin Films from Titanium Tetrachloride and Water

  • Leem, Jina;Park, Inhye;Li, Yinshi;Zhou, Wenhao;Jin, Zhenyu;Shin, Seokhee;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1195-1201
    • /
    • 2014
  • Atomic layer deposition (ALD) of $TiO_2$ thin film from $TiCl_4$ and $H_2O$ has been intensively studied since the invention of ALD method to grow thin films via chemical adsorptions of two precursors. However the role of HCl which is a gaseous byproduct in ALD chemistry for $TiO_2$ growth is still intriguing in terms of the growth mechanism. In order to investigate the role of HCl in $TiO_2$ ALD, HCl pulse and its purging steps are inserted in a typical sequence of $TiCl_4$ pulse-purge-$H_2O$ pulse-purge. When they are inserted after the first-half reaction (chemisorption of $TiCl_4$), the grown thickness of $TiO_2$ becomes thinner or thicker at lower or higher growth temperatures than $300^{\circ}C$, respectively. However the insertion after the second-half reaction (chemisorption of $H_2O$) results in severely reduced thicknesses in all growth temperatures. By using the result, we explain the growth mechanism and the role of HCl in $TiO_2$ ALD.

Identification and Biosynthetic Pathway of Brassinosteroids in Seedling Shoots of Zea mays L. (옥수수 유식물 신초에서 Brassinosteroid류의 동정 및 생합성 경로 추정)

  • Kang, Min-Wook;Kim, Young-Soo;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.411-419
    • /
    • 2003
  • The potent biosynthetic precursors, 24$\alpha$-methylcholesterol and 24$\alpha$-methylcholestanol, and the endogenous brassinosteroids (BRs), castasterone (CS) and 6-deoxocastasterone (6-deoxoCS), were identified from shoots of maize seedlings. In addition, the presence for activities of several enzymes involved in the late C6-oxida-lion pathway from 24$\alpha$-methylcholestanol to CS was demonstrated in the plants. However, activity for brassinolide (BL) synthase which catalyze the conversion of CS to BL, the last step of the late C6-oxidation pathway, was not detected in the enzyme solution obtained from the maize shoots. Together with the fact that BL was not identified from the maize shoots, these results strongly suggested that BRs in the maize shoots are biosynthesized during seedling growth and the active BR in the shoots is not BL but CS.

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

Synthesis and properties of PBO precursors having bulky groups and ether linkages in the main chain (주사슬에 벌키그룹과 에테르 연결고리를 갖는 PBO 전구체의 합성 및 특성)

  • Yoon, Doo-Soo;Kim, Hee-Sun;Choi, Jae-Kon;Hong, Wan-Hae
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.271-280
    • /
    • 2008
  • Aromatic polyhydroxyamides (PHAs) having bulky groups and ether linkages in the polymer main chain were synthesized by the low temperature solution polycondensation reaction. FT-IR, $^{1}H-NMR$, DSC, and TGA were used to study the properties of these polymers. The PHAs were converted into polybenzoxazoles (PBOs) by a thermal cyclization reaction, and endothermic peaks were observed in the range of $220{\sim}400^{\circ}C$. The introduction of the ether and bulky groups in the main chain improved the solubility of the PHAs in aprotic solvents such as DMSO and DMF, but the PBOs were nearly insoluble in common solvents. All the PBOs, except for PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, and PBO 6 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, exhibited $T_g's$ in the range from 149 to $217^{\circ}C$ by DSC. The thermogravimetric analyses indicated that most of the PBOs were thermally stable up to $400^{\circ}C$ in nitrogen. Maximum weight loss temperatures of PHA 5 and PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring were $707^{\circ}C$ and $683^{\circ}C$, respectively, which were the hightest temperatures among the corresponding copolymers. The PBOs in nitrogen exhibited relatively high char yields in the range of $63{\sim}70%$ at $900^{\circ}C$.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF