• 제목/요약/키워드: $CO_2$sensor

Search Result 913, Processing Time 0.031 seconds

Gas sensing properties of $In_{2}O_{3}$ thin film prepared by spin-coating method (스핀 코팅에 의한 $In_{2}O_{3}$ 박막의 가스감지특성)

  • Chung, Wan-Young;Lim, Jun-Woo;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.117-123
    • /
    • 1998
  • The $In_{2}O_{3}$ thin films were fabricated on a alumina substrate by spin-coating method and the gas sensing properties were tested. The coating solution was synthesized by the mixing of aqueous solution of $In(OH)_{3}$ and acetic acid, and ammonium carboxymethyl cellulose as a binder. The $In_{2}O_{3}$ thin films between 71 and 210nm thick were obtained by spin-coating between 1 and 7 times followed by drying at $110^{\circ}C$ and calcining at $600^{\circ}C$. The films consisted of a dense stack of tiny $In_{2}O_{3}$ particles between 23 and 27nm in diameter and covered well large grains of the alumina substrate. Then film thickness was well controlled by the number of spin-coating. The fabricated $In_{2}O_{3}$ films showed high sensitivity and very fast response property to CO and $H_{2}$.

  • PDF

$In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method (졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서)

  • Lee, Yun-Su;Song, Kap-Duk;Choi, Nak-Jin;Joo, Byung-Su;Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • A highly selective, sensitive and reliable ozone sensing $In_2O_3$ thin film was fabricated by a sol-gel method. The fabricated film is operated at a relatively lower temperature than ever developed thin films and saved operating power. $In_2O_3$ films deposited by sol-gel technique has been recently attracted because it is an economical and energy saving method and precisely controlled microstructure. Indium alkoxide precursor was synthesized from the reaction between indium hydroxide and butanol. PVA binder was used to improve adhesion of the films. The $In_2O_3$ thin films were obtained by spin coating from 1 to 5 times followed by drying at $100^{\circ}C$ and calcining at $600^{\circ}C$ for 1h. The film thickness was controlled by the number of coating time. The morphology and the thickness of the $In_2O_3$ films were examined by a SEM and XRD. The $In_2O_3$ thin films show a high sensitive to ozone gas at operating temperature of $250^{\circ}C$. The $In_2O_3$ sensor has very good selectivity to $CH_4$, CO, $C_4H_{10}$ and ethanol.

  • PDF

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

The fabrication and gas sensing characteristics of $LaFeO_3$ thin film sensor ($LaFeO_3$ 박막센서의 제작 및 가스 검지 특성)

  • Jang, Jae-Young;Shin, Jeong-Ho;Kim, Tae-Jung;Kim, Jun-Gon;Park, Ki-Chul;Kim, Jeong-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1756-1758
    • /
    • 1999
  • As new gas sensing material with high cata activity for NO decomposition and for CO oxid $LaFeO_3$ thin films with different thicknesses fabricated by the R.F. magnetron sputtering m on an $Al_2O_3$ substrates with Ag electrodes. The sensing characteristics of the $LaFeO_3$ thin films studied as a function of annealing temperature film thickness. The thin film annealed at showed the highest sensitivity of 110% for CO 60% for NO.

  • PDF

A Ubiquitous Sensor Network for Air Environment Monitoring of Subway (지하철역 대기환경 감시를 위한 유비쿼터스 센서 네트워크)

  • Kwon, Jong-Won;Kim, Hie-Sik;Kang, Sang-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.182-183
    • /
    • 2008
  • 환기시설이 열악한 도시 지하철역 내의 대기환경은 지상보다 열악할 수밖에 없다. 현재 지하철역을 주로 사용하는 시민들의 안전을 보호 하고 지하철의 대기환경을 개선하기 위해 스크린 도어, 자동 제어 환기시설, 종합 영상 감지시스템 등 다양한 노력을 기울이고 있다. 하지만 일부 지하철역에 설치되어 있는 공기질 모니터링 시스템은 수입품에 의존하고 고가의 장비이므로 초기설치 비용뿐만 아니라 유지보수의 어려움을 겪고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 무선 센서 네트워크 기술을 적용하여 저가형 대기환경 모니터링 시스템을 개발했다. 이 시스템의 구성은 센서노드(ZED : ZigBee End Deice), 네트워크 코디네이터(ZCM : ZigBee Coordinator Modem), 수신서버로 구성된다. 지하철역 내부의 미세먼지, CO2, CO, 온습도, VOCs 데이터를 센싱할 수 있는 확장 센서보드를 설계한 후, 지하공간에서의 열악한 통신환경에서 QoS를 보장할 수 있도록 ZigBee 라우팅 기술을 이용한 센서노드(ZED)를 인터페이스하여 하나의 통합된 대기환경 센서 노드(ZED)를 개발했다. 또한 수신서버에 USB방식으로 연결되어 각각의 ZED로부터 데이터를 수신하는 센서노드(ZCM)과 전송된 데이터를 저장 및 처리하여 언제 어디서나 누구든지 인터넷을 통해 확인 가능하도록 지하철 대기환경 모니터링을 위한 수신서버를 개발했다.

  • PDF

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

Development of a wireless radiation detection backpack using array silicon-photomultiplier (SiPM)

  • Kim, Jeong Ho;Back, Hee Kyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.456-460
    • /
    • 2020
  • In this research, a radiation detection backpack to be used discreetly or by a wide range of users was developed using array silicon-photomultiplier (SiPM) and CsI (Tl), and its characteristics were evaluated. The R-squared value, which indicates the responsiveness of a detector based on the signal intensity, was determined to be 0.981, indicating a good linear responsivity. The energy resolutions for gamma radiation energies of Co-57 (122 keV), Ba-133 (356 keV), Cs-137 (662 keV), and Co-60 (1332 keV) were found to be 13.40, 10.50, 6.77, and 3.16%, respectively. These results confirm good energy resolution characteristics. Furthermore, in the case of mixed sources, the gamma radiation peaks were readily distinguishable, and the R-squared value for energy linearity was calculated to be 0.999, demonstrating an exceptional energy linearity. Further research based on the results of this study would enable the commercialization of lightweight SiPM-based wireless radiation detection backpacks that can be used for longer durations by replacing the photomultiplier tube, which is mainly used as the optical sensor in existing radiation detection backpacks.