• Title/Summary/Keyword: $CO_2$capture

Search Result 487, Processing Time 0.021 seconds

Performance Assessment of Fume Extracting Welding Gun (흄토치 성능 평가에 관한 연구)

  • Choi, Chan-Ki;Kim, Tae-Hyeung;Ha, Hyun-Chul;Won, Jung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.90-99
    • /
    • 1999
  • Fume extracting welding gun is one of the promising options for reducing the welder's fume exposure. The performance of the gun was assessed on the basis of capture efficiency. Capture efficiencies were measured in a test chamber recommended by American Welding Society. The overall capture efficiency was turned out to be above 95%. But it did not include the effect of crossdraft existing in the real work environment because all experiments were conducted in a closed chamber. It thus needs more work in the future. In addition, the future directions for improving the pres ent commercial techniques of the gun were discussed.

  • PDF

Performance Comparison of Molten Carbonate Fuel Cell Hybrid Systems Minimizing Carbon Dioxide Emissions (이산화탄소 배출을 최소화하는 용융탄산염 연료전지 하이브리드 시스템들의 성능 비교)

  • AHN, JI HO;YOON, SUK YOUNG;KIM, TONG SEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • Interests in fuel cell based power generation systems are on the steady rise owing to various advantages such as high efficiency, ultra low emission, and potential to achieve a very high efficiency by a synergistic combination with conventional heat engines. In this study, the performance of a hybrid system which combined a molten carbonate fuel cell (MCFC) and an indirectly fired micro gas turbine adopting carbon dioxide capture technologies was predicted. Commercialized 2.5 MW class MCFC system was used as the based system so that the result of this study could reflect practicality. Three types of ambient pressure hybrid systems were devised: one adopting post-combustion capture and two adopting oxy-combustion capture. One of the oxy-combustion based system is configured as a semi-closed type, while the other is an open cycle type. The post-combustion based system exhibited higher net power output and efficiency than the oxy-combustion based systems. However, the semi-closed system using oxy-combustion has the advantage of capturing almost all carbon dioxide.

Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide

  • Shim, Jae-Goo;Lee, Dong Woog;Lee, Ji Hyun;Kwak, No-Sang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate ($NaHCO_3$). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of $CO_2$ was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed.

Brief Review on Carbon Dioxide Capture and Utilization Technology (CCU 기술 국내외 연구동향)

  • Kim, Hak Min;Nah, In Wook
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.589-595
    • /
    • 2019
  • The policies and researches for the reduction of greenhouses gases have been performed according to"Paris Agreement". Because South Korea is the $6^{th}$ biggest greenhouses gas emitter in the world, the Korea government has prepared the strategies for the reduction of greenhouse gases. The development of CCUS (Carbon Capture Utilization and Storage) technology is necessary to reduce greenhouse gases. Therefore, the CCUS has been studied by many contries in the world. In this work, the trends of CCUS technologies R&D has been shortly investigated.

HAZOP Study for Risk Assessment and Safety Improvement Strategies of CO2 Separation Process (HAZOP 기법을 이용한 이산화탄소 분리 공정 위험성 평가 및 안전도 향상 전략)

  • You, Chanhee;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • Various technologies to cope with the energy and environmental issues related to the chemical and electric power industry are in development and demonstration stage. Especially, the absorption process of carbon dioxide ($CO_2$) using amine solution is a key technology of the $CO_2$ capture and storage (CCS). In this study, we identify the major risk factors and suggest strategies for safety improvement by analyzing and assessing commercial the amine-based $CO_2$ separation process. HAZOP method was used to assess the risk for the process. We provide facilities and operational strategies to mitigate or eliminate major risk factors by assessing the relative ranks of identified risk factors using a risk matrix.

CFD APLICATIONS FOR THE $CO_2$ OCEAN SEQUESTRATION ($CO_2$ 해양격리를 위한 CFD의 응용연구)

  • Jung, R.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.196-201
    • /
    • 2009
  • Global warming issues due to the $CO_2$(Carbon Dioxide) become increasing since the Industrial Revolution. After the Kyoto protocol at 1997, nations which have the prearranged quota drives their national project for the reduction of $CO_2$. Korean Government start to the related big projects in the view of three concepts which have consist of the $CO_2$ exhaust reduction on land, $CO_2$ capture and $CO_2$ storage. Furthermore, the storage method putting into depleted region underground is accepted by the London Convention while the ocean diluted method discharging the liquid $CO_2$ into the deep ocean using the long pipe which is towed by the surface vessel is underway for the research steps which means that there are many potentials for the R&Ds that need for the breakthrough. In this paper, the role and example of the Computational Fluid Dynamics for the feasibility study of the $CO_2$ ocean sequestration is mentioned.

  • PDF

Public Awareness and Acceptance of Carbon Dioxide Capture and Storage (이산화탄소 포집 및 저장에 대한 대중의 인식과 수용도)

  • Lee, Sang-Il;Sung, Joosik;Hwang, Jin Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.469-481
    • /
    • 2012
  • CCS(Carbon Dioxide Capture and Storage) is considered as the most effective counterplan in the mitigation of climate change. Even though the risk of leakage of $CO_2$ stored in the geologic formation is very low, the public is expected to disagree with the initiation of a CCS project without proper management plans ensuring the safety. In this study, recognition of laypeople were surveyed about CCS, climate change, characteristics of carbon dioxide, storage concepts, ground pressure, the impact of carbon dioxide, and carbon dioxide for leakage. Thereafter the factors that could affect to recognition of CCS were analyzed by regression analysis. A survey was carried out to find out the public understanding and awareness about climate change and CCS. It is the purpose of this study to propose appropriate risk management strategies based on the findings from the survey.

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

A Study on the Thermodynamic Analysis and the Computer Simulation for the $CO_2$ and $H_{2}S$ Capture Process Using Methanol as a Solvent (메탄올 용매를 이용한 이산화탄소와 황화수소 포집공정의 열역학적 해석 및 전산모사에 관한 연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, computer simulation works have been performed for the capture process of the $CO_2$ and $H_{2}S$ gases contained in the effluent stream using methanol aqueous solution. In order to increase the solubilities of the $CO_2$ and $H_{2}S$ in the methanol aqueous stream, the operating pressure of the absorber was raised to 30 bar and the feeding temperature of the solvent was lowered to $-20^{\circ}C$ by using refrigeration cycle. NRTL liquid activity coefficient model was used to estimate the liquid phase nonidealities for methanol and water. Soave-Redlich-Kwong equation of state was used for the vapor phase nonidealities. Henry's law option was also used to calculate the solubilities of the supercritical noncondensible gases into the methanol aqueous solvent stream.

  • PDF

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.