• Title/Summary/Keyword: $CO_2$Gas

Search Result 4,965, Processing Time 0.032 seconds

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology (가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향)

  • Lee, Bo Ram;Ryu, Jun-Hyung;Han, Kunwoo;Park, Da-Hye;Lee, Kun-Hong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.232-243
    • /
    • 2010
  • Gas hydrates are crystalline solids composed of water and gas molecules. Water molecules are linked through hydrogen bonding and create cavities(host lattice) that can capture a large variety of guest molecules under appropriate conditions, generally high pressure and low temperature. Recently, many researchers try to apply gas hydrates to industrial processes to capture greenhouse gases due to the facts that the process is eco-friendly and target gas molecules can be preferentially captured. In this paper, we introduced recent studies on $CO_2$ and $CO_2-N_2$ mixture hydrates to evaluate the feasibility of industrial application of gas hydrate technology to $CO_2$ capture process. Specifically, we put emphasis on the technical feasibility of $CO_2$ separation in steel industry using gas hydrate formation principles.

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Characteristics and Preparation of Gas Sensor Using Nano-ZnO Powders (나노 ZnO 분말을 이용한 가스센서 제작 및 특성연구)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.300-304
    • /
    • 2015
  • Nanorod ZnO and spherical nano ZnO for gas sensors were prepared by hydrothermal reaction method and hydrazine method, respectively. The nano-ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties were investigated for hydrocarbon gas. The effects of Co concentration on the structural and morphological properties of the nano ZnO:Co were investigated by X-ray diffraction and scanning electron microscope (SEM), respectively. XRD patterns revealed that nanorod and spherical ZnO:Co with a wurtzite structure were grown with (100), (002), (101) peaks. The sensitivity of nanorod and spherical ZnO:Co sensors was measured for 5 ppm $CH_4$ and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to the $CH_4$ and $CH_3CH_2CH_3$ gas of spherical nano ZnO:Co sensors was observed at Co 6 wt%. The spherical nano ZnO:Co sensor exhibited a higher sensitivity to hydrocarbon gas than nanorod ZnO.

CO2 Sensing Properties of SnO2-Cr2O3 Composite Nanofibers Via Electrospinning Method (전기방사법으로 합성된 SnO2-Cr2O3 복합나노섬유의 이산화탄소 가스감응 특성)

  • Lee, Jae-Hyoung;Kim, Jae-Hun;Kim, Jin-Young;Kim, Sang Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.289-295
    • /
    • 2017
  • Detection of $CO_2$ gas in both indoor and outdoor atmospheres is now becoming an important issue because of greenhouse effect and climate crisis. In this study, gas sensors based on $SnO_2-Cr_2O_3$ composite nanofibers were fabricated by the electrospinning method to detect $CO_2$ gas. The gas sensors showed a response to ppm level of $CO_2$ gas from room temperature to $200^{\circ}C$ while the highest response was observed at $150^{\circ}C$. The gas response is enhanced by the catalytic property of $Cr_2O_3$. Selective $CO_2$ detection is obtained through the chemical reaction of $Cr_2O_3$ to chromium carbonate. All the results suggest the $SnO_2-Cr_2O_3$ composite material is promising for the use of $CO_2$ gas sensors.

Effect of $CO_2$Gas injection on Properties of Extruded Corn Starch (탄산가스 주입이 압출팽화 옥수수전분의 성질에 미치는 영향)

  • 류기형;강선희;이은용;임승택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 1997
  • Corn starch was extruded under relatively low shear, high moisture, and low temperature. Puffing of corn starch dough was induced by injecting $CO_2$gas in the range from 0MPa to 0.09MPa. Piece density and compressive modulus for puffed corn starch were decreased by increasing the injection pressure to 0.07MPa, and increased above 0.07MPa. the microstructure of corn starch puffed with $CO_2$gas showed thick cell size, compared with those puffed with steam. RVA paste viscosity curves of corn starch puffed with $CO_2$had different patterns from those puffed with steam, probably resulted from partial gelatinization of starch. Water absorption and solubility were not significantly changed by $CO_2$injection pressure, but the average degree of polymerization was reduced by higher $CO_2$injection. The water absorption, water solubility, and the average degree of polymerization for corn starch puffed with $CO_2$were significantly lower than those puffed with steam.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

Study on the reduction of $CO_2$ and NOx emission by coastal transport of import-export container cargo (수출입컨테이너화물의 연안운송에 의한 이산화탄소($CO_2$)와 질소산화물(NOx) 배출량 삭감에 관한 연구)

  • Kim S. H.;Coh C. D.;Cho Y. J.;Van S. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the reduction of CO₂ gas emission and exhaust gas emission by using the shift of coastal transport from land transport for import-export container cargo was proposed. At first, the domestic CO₂ gas emission, exhaust gas emission and the transportation of import-export container cargo are investigated. And also, we investigated the reduction of CO₂ gas emission and exhaust gas emission by the shift of coastal transport from land transport for the transportation of import-export container cargo between Kyongin area and Pusan Port. Finally, the change of NOx gas emission due to the change of the share of coastal transportation and using the 320TEU container ship are investigated. The research results show that the shift of coastal transport from land transport was effective to reduce the CO₂ gas emission and exhaust gas emission.

  • PDF

Soil CO2 Monitoring Around Wells Discharging Methane (메탄 유출 관정 주변의 토양 CO2 모니터링)

  • Chae, Gitak;Kim, Chan Yeong;Ju, Gahyeun;Park, Kwon Gyu;Roh, Yul;Lee, Changhyun;Yum, Byoung-Woo;Kim, Gi-Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.407-419
    • /
    • 2022
  • Soil(vadose zone) gas compositions were measured for about 3 days to suggest a method for monitoring and interpreting soil gas data collected around wells from which methane(CH4) is outflowing. The vadose zone gas samples were collected within 1 m around two test wells(TB2 and TB3) at Pohang and analyzed for CO2, CH4, N2 and O2 concentrations in situ. CO2 flux was measured beside TB2. In addition, gas samples from well head in TB2 and atmospheric air samples were collected for comparison. Carbon isotopes of CO213CCO2) of samples collected on the last day of the study period were analyzed in the laboratory. The two test wells (TB2 and 3) were 12.7 m apart and only TB3 was cemented to the surface. According to the bio-geochemical process-based interpretation, the relationships between CO2 and O2, N2, and N2/O2 of vadose zone gas were plotted between the lines of CH4 oxidation and CO2 dissolution. In addition, the CH4 concentrations of gas samples from the wellhead of the uncemented well (TB2) were 5.2 times higher than the atmospheric CH4 concentration. High CO2 concentrations (average 1.148%) of vadose zone gas around TB2 seemed to be attributed to the oxidation of CH4. On the other hand, the vadose zone CO2 around the cemented well(TB3) showed a relatively low concentration(0.136%). This difference indicates that the vadose zone gas(including CO2) around the CH4 outflowing well were strongly affected by well completion(cementing). This study result can be used to establish strategies for environmental monitoring of soil around natural gas sites, and can be used to monitor leakage around injection and observation wells for CO2 geological storage. In addition, the method of this study is useful for soil monitoring in natural gas storage and oil-contaminated sites.