DOI QR코드

DOI QR Code

CO2 Sensing Properties of SnO2-Cr2O3 Composite Nanofibers Via Electrospinning Method

전기방사법으로 합성된 SnO2-Cr2O3 복합나노섬유의 이산화탄소 가스감응 특성

  • Lee, Jae-Hyoung (Department of Materials Science & Engineering, Inha University) ;
  • Kim, Jae-Hun (Department of Materials Science & Engineering, Inha University) ;
  • Kim, Jin-Young (Department of Materials Science & Engineering, Inha University) ;
  • Kim, Sang Sub (Department of Materials Science & Engineering, Inha University)
  • 이재형 (인하대학교 신소재공학과) ;
  • 김재훈 (인하대학교 신소재공학과) ;
  • 김진영 (인하대학교 신소재공학과) ;
  • 김상섭 (인하대학교 신소재공학과)
  • Received : 2017.07.11
  • Accepted : 2017.08.01
  • Published : 2017.08.31

Abstract

Detection of $CO_2$ gas in both indoor and outdoor atmospheres is now becoming an important issue because of greenhouse effect and climate crisis. In this study, gas sensors based on $SnO_2-Cr_2O_3$ composite nanofibers were fabricated by the electrospinning method to detect $CO_2$ gas. The gas sensors showed a response to ppm level of $CO_2$ gas from room temperature to $200^{\circ}C$ while the highest response was observed at $150^{\circ}C$. The gas response is enhanced by the catalytic property of $Cr_2O_3$. Selective $CO_2$ detection is obtained through the chemical reaction of $Cr_2O_3$ to chromium carbonate. All the results suggest the $SnO_2-Cr_2O_3$ composite material is promising for the use of $CO_2$ gas sensors.

Keywords

References

  1. B. K. Billing, P. K. Agnihotri and N. Singh, Fabrication of branched nanostructures for CNT@Ag nano-hybrids: application in $CO_2$ gas detection, J. Mater. Chem. C 5 (2017) 4226. https://doi.org/10.1039/C7TC00984D
  2. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, M. M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sens. Actuators B 157 (2011) 310-313. https://doi.org/10.1016/j.snb.2011.03.035
  3. S. A. Waghuley, S. M. Yenorkar, S. S. Yawale and S. P. Yawale, Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor, Sens. Actuators B 128 (2008) 366-373. https://doi.org/10.1016/j.snb.2007.06.023
  4. T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi and Y. Takita, Preparation of CuO thin films on porous $BaTiO_3$ by self-assembled multibilayer film formation and application as a $CO_2$ sensor, J. Mater. Chem 8 (1998) 2037-2042. https://doi.org/10.1039/a801595c
  5. J.-S. Lee, A. Katoch, J.-H. Kim and S. S. Kim, Growth of networked $TiO_2$ nanowires for gassensing applications, J. Nanosci. Nanotechnol. 16 (2016) 11580-11585. https://doi.org/10.1166/jnn.2016.13555
  6. J.-H. Lee, A. Katoch, S.-W. Choi, J.-H. Kim, H. W. Kim and S. S. Kim, Extraordinary Improvement of gas-sensing performances in $SnO_2$ nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets, ACS Appl. Mater. Interfaces 7 (2015) 3101-3109. https://doi.org/10.1021/am5071656
  7. B. Weintraub, Z. Zhou, Y. Li and Yulin Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale 2 (2010) 1573-1587. https://doi.org/10.1039/c0nr00047g
  8. X. Lu, C. Wang and Y. Wei, One-Dim ensional Composite Nanomaterials: Synthesisby electrospinning and their applications, small 5 (2009) 2349-2370. https://doi.org/10.1002/smll.200900445
  9. L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q, Duan and Z.-H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol, Sens. Actuators B 126 (2007) 604-608. https://doi.org/10.1016/j.snb.2007.04.011
  10. A. Kolmakov and M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res 34 (2004) 151-180. https://doi.org/10.1146/annurev.matsci.34.040203.112141
  11. J.-H. Kim, A. Katoch, H. W. Kim and S. S. Kim, Realization of ppm-level CO detection with exceptionally high sensitivity using reduced graphene oxide-loaded $SnO_2$ nanofibers with simultaneous Au functionalization, Chem. Commun. 52 (2016) 3832. https://doi.org/10.1039/C5CC10482C
  12. N. Ma, K. Suematsu, M. Yuasa, T. Kida and K. Shimanoe, Effect of water vapor on Pd-loaded $SnO_2$ nanoparticles gas sensor, ACS Appl. Mater. Interfaces 7 (2015) 5863-5869. https://doi.org/10.1021/am509082w
  13. L. Li, S. He, M. Liu, C. Zhang and W. Chen, Three-dimensional mesoporous graphene aerogelsupported $SnO_2$ nanocrystals for high-performance $NO_2$ gas sensing at low temperature, Anal. Chem. 87 (2015) 1638-1645. https://doi.org/10.1021/ac503234e
  14. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar and X. Wu, Hierarchical $SnO_2$ Nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications, ACS Appl. Mater. Interfaces 6 (2014) 2174-2184. https://doi.org/10.1021/am405301v
  15. J.-H. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanoparticles and core-shell nanowires, Sens. Actuators B 249 (2017) 177-188. https://doi.org/10.1016/j.snb.2017.04.090
  16. M. S. Barbosa, P. H. Suman, J. J. Kim, H. L. Tuller, J. A. Varela and M. O. Orlandi, Gas sensor properties of Ag- and Pd-decorated SnO microdisks to $NO_2$, $H_2$ and CO: Catalyst enhanced sensor response and selectivity, Sens. Actuators B 239 (2017) 256-261.
  17. A. Katoch, Z. U. Abideen, J.-H. Kim and S. S. Kim, Influence of hollowness variation on the gassensing properties of ZnO hollow nanofibers, Sens. Actuators B 232 (2016) 698-704. https://doi.org/10.1016/j.snb.2016.04.013
  18. M. H. Al-Marzouqi, S. A. M. Marzouk and N. Abdullatif, High pressure removal of acid gases using hollow fiber membrane contactors: Further characterization and long-term operational stability, J. Nat. Gas. Sci. Eng 37 (2017) 192-198. https://doi.org/10.1016/j.jngse.2016.11.039
  19. J.-H. Kim, H. W. Kim and S. S. Kim, Ultrasensitive benzene detection by a novel approach: core-shell nanowires combined with the Pdfunctionalization, Sens. Actuators B 239 (2017) 578-585. https://doi.org/10.1016/j.snb.2016.08.071
  20. M. Poloju, N. Jayababu, E. Manikandan and M. V. Ramana Reddy, Enhancement of the isopropanol gas sensing performance of $SnO_2$/ZnO core/shell nanocomposites, J. Mater. Chem. C. 5 (2017) 2662-2668. https://doi.org/10.1039/C6TC05095F
  21. Q. Xue, X. Pan, X. Li, J. Zhang and Q. Guo, Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons, Nanotechnology, 28 (2017) 065702. https://doi.org/10.1088/1361-6528/aa510d
  22. J.-H. Kim, A. Katoch, S.-H. Kim and S. S. Kim, Chemiresistive sensing behavior of $SnO_2$ (n)-$Cu_2O$(p) core-shell nanowires, ACS Appl. Mater. Interfaces 7 (2015) 15351-15358. https://doi.org/10.1021/acsami.5b03224
  23. A. Katoch, S.-W. Choi, J.-H. Kim, J. H. Lee, J.-S. Lee and S. S. Kim, Importance of the nanograin size on the $H_2S$-sensing properties of ZnO-CuO composite nanofibers, Sens. Actuators B 214 (2015) 111-116. https://doi.org/10.1016/j.snb.2015.03.012
  24. Z. U. Abideen, H. W. Kim and S. S. Kim, An ultra-sensitive hydrogen gas sensor using reduced graphene oxide-loaded ZnO nanofibers, Chem. Commun. 51 (2015) 15418. https://doi.org/10.1039/C5CC05370F
  25. A. Katoch, J.-H. Kim and S. S. Kim, CuO/$SnO_2$ Mixed nanofibers for $H_2S$ detection, J. Nanosci. Nanotechnol. 15 (2015) 8637-8341. https://doi.org/10.1166/jnn.2015.11505
  26. M. W. Abee, S. C. York and D. F. Cox, $CO_2$ Adsorption on r-$Cr_2O_3$ (1012) surfaces, J. Phys. Chem. B 105 (2001) 7755-7761. https://doi.org/10.1021/jp011223u
  27. H. Kuhlenbeck, C. Xu, B. Dillmann, M. HaBel, B. Adam, D. Ehrlich, S. Wohlrab, H.-J. Freund, U. A. Ditzinger, H. Neddermeyer, M. Neumann and M. Neuber, Adsorption and reaction on oxide surface-: CO and $CO_2$ on $Cr_2O_3$(111), Ber. Bunsenges. Phys. Chem. 96 (1992) 15-27. https://doi.org/10.1002/bbpc.19920960104
  28. J. Moon, J.-A. Park, S.-J. Lee, T. Zyung and I.-D. Kim, Pd-doped $TiO_2$ nanofiber networks for gas sensor applications, Sens. Actuators B 149 (2010) 301-305. https://doi.org/10.1016/j.snb.2010.06.033
  29. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. Macdiarmid and Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped $TiO_2$ electrospun nanofibers, J. Am. Chem. Soc. 130 (2008) 5036-5037. https://doi.org/10.1021/ja800176s
  30. B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska and J. Augustynski, Metal oxide photoanodes for solar hydrogen production, J. Mater. Chem. 18 (2008) 2298-2303. https://doi.org/10.1039/b718644d
  31. M. R. -Nasarabadi, F. Ahmadi, S. Hamdi, N. Eslami, K. Didehban and M. R. Ganjali, Preparation of nanosized chromium carbonate and chromium oxide green pigment through direct carbonation and precursor thermal decomposition, J. Mol. Liq. 216 (216) 814-820. https://doi.org/10.1016/j.molliq.2016.01.065