• Title/Summary/Keyword: $CO_2$ membrane

Search Result 1,056, Processing Time 0.023 seconds

Development of Ceramic Hollow Fiber Membrane Contactor Modules for Carbon Dioxide Separation (이산화탄소 분리용 세라믹 중공사 접촉막 모듈 기술 개발)

  • Lee, Hong Joo;Che, Jin Woong;Park, Jung Hoon
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Porous $Al_2O_3$ hollow fiber membranes were successfully prepared by dry-wet spinning/sintering method. The SEM image shows that the $Al_2O_3$ hollow fiber membrane consists mostly of sponge pore structure. The contact angle and the breakthrough pressure were $126^{\circ}$ and 1.91 bar, respectively. This results indicate that the $Al_2O_3$ hollow fiber membranes were successfully modified to hydrophobic surface. The hydrophobic modified $Al_2O_3$ hollow fiber membranes were assembled into a membrane contactor system to separate $CO_2$ from a model gas mixture of the flue gas at elevated gas velocity. The $CO_2$ absorption flux was enhanced when the gas velocity increased from $1{\times}10^{-3}$ to $6{\times}10^{-3}$ m/s. Whereas the $CO_2$ absorption flux was decreased with the number of hollow fiber membrane of a module because of the concentration polarization. Furthermore, we developed an lab-scale $Al_2O_3$ hollow fiber membrane contactor modules and their system (i.e., $CO_2$ absorption using the $Al_2O_3$ membrane and monoethanolamine (MEA)) that could dispose of over $0.02Nm^3/h$ mixture gas (15% $CO_2$) with the removal efficiency higher than 95%. The results can be useful in a field of the membrane contactor for $CO_2$ separation, helping to design and extend a equipment.

A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode (진공모드에서 NaY 제올라이트 막의 $CO_2-N_2-O_2$ 혼합기체의 투과거동 연구)

  • Jeong, Su Jung;Yeo, Jeong-Gu;Han, Moon Hee;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.352-359
    • /
    • 2013
  • In the present study, $CO_2$ permeation through a hydrophilic NaY zeolite membrane was studied under permeate evacuation mode for $CO_2$ single gas, $CO_2-N_2$ and $CO_2-O_2$ binary mixtures, and $CO_2-N_2-O_2$ ternary mixture. It was reconfirmed that the $CO_2$ permeation was governed by surface diffusion and the $CO_2$ selectivity was induced from blocking effect of adsorbed $CO_2$ molecules. The $CO_2$ permeance measured in permeate evacuation mode was much lower than that done in He sweeping mode, but was comparable to that obtained under feed pressurization mode. The NaY zeolite membrane showed a considerable $CO_2$ separation for $14%CO_2-80%N_2-6%O_2$ mixture : $CO_2$ permeance was about $1{\times}10^{-7}mol/m^2secPa$ and $CO_2$ selectivity was more than 10. Therefore, it was concluded that NaY zeolite membrane was one of promising membranes for post-combustion CCS process.

Membrane contactor and Carbon Dioxide Separation

  • 이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.59-101
    • /
    • 2002
  • PVDF is good material for a hollow fiber membrane with high porosity and excellent hydrophobicity. Asymmetric PVDF hollow fiber membranes were prepared by the Loeb-Sourirajan phase inversion method. Asymmetric PVDF hollow fiber membranes could be controlled in pore size and porosity using various additives(LiCl, ZnCl$_2$) and internal coagulants (water, EtOH/water, and DMAc/water mixture). $CO_2$removal efficiency of asymmetric PVDF hollow fiber membranes was 1.2 times high than that of commercialized PP hollow fiber membranes at MEA 5wt% solution. $CO_2$flux of asymmetric PVDF hollow fiber membranes was 2.5 times higher than that of commercialized PP hollow fiber membranes. $CO_2$removal efficiency and absorption rate of asymmetric PVDF hollow fiber membranes were 30 times higher than those of packed column at absorbent $H_2O$. $CO_2$flux of asymmetric PVDF hollow fiber membranes at MEA 5wt% solution was 48 times higher than that of pure water. In the case of MEA 5wt% solution used as an absorbent, the $CO_2$absorption rate and removal efficiency of PVDF hollow fiber membrane were 2.3 times higher than that of a packed column.

  • PDF

Polymeric Membrane Modules for Substituting the $CO_2$ Absorption Column in the DME Plant Process (DME 플랜트 $CO_2$흡수탑 대체용 고분자 분리막 모듈)

  • Chung, Jong-Tae;Lee, Choong-Seop;Koh, Hyung-Chul;Ha, Seong-Yong;Nam, Sang-Yong;Jo, Won-Jun;Baek, Young-Soon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.142-154
    • /
    • 2012
  • In order to remove $CO_2$ from the DME plant process, we investigated the composite membrane with rubbery polymers as the separation layer and its separation performance of $CO_2$ and $H_2$. Hollow fiber membranes for supporting layer were prepared by solution spinning method. In case of using PDMS as a separation layer, the composite membranes showed the permeation rates of $CO_2$ were over 300 GPU and minimum $CO_2/H_2$ selectivitties were 4.3 and in case of using PEBAX as a separation layer, the composite membranes showed the permeation rates of $CO_2$ were over 120 GPU and minimum $CO_2/H_2$ selectivities were 5.

Preparation of Pt impregnated Nafion self-humidifying membranes for PEMFC using supercritical $CO_2$ (초임계 함침법을 이용한 PEMFC용 Pt/Nafion 자가가습막의 제조 연구)

  • Synn, Woo-Kyun;Kim, Hwa-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.433-437
    • /
    • 2006
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell(PEMFC) were synthesized via supercritical-impregnation methods. The Nafion 112 membranes were impregnated with Pt(II)$(acetylacetonate)_2$ from a supercritical carbon dioxide $(scCO_2)$ solution at $80^{\circ}C$ and 30MPa. After the impregnation, the pressure decreased slowly by releasing $CO_2$. And the Pt-impregnated Nafion membrane was converted Pt deposited Nafion membrane by reducing agent, sodium borohydride $(NaBH_4)$ with various concentrations under $50^{\circ}C$ and 2 hours. The prepared Pt-impregnated Nafion (Pt/Nafion) composite membrane were investigated by Electron Prove Micro analysis (EPMA) and X-rat Diffraction analysis (XRD) which showed distribution of Pt particle and Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) a which revealed morphology of surface of Pt/Nafion composite membrane. The performance of the Pt/Nafion 112 membranes was examined in PEMFC as aself-humidifyin membranes using purpose-built equipment.

  • PDF

Preparation of PEGDA/PETEDA Dendrimer Membranes for $CO_2$ Separation ($CO_2$ 분리를 위한 PEGDA/PETEDA dendrimer 막의 제조)

  • Han, Na;Lee, Hyunkyung
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • PEGDA/PETEDA dendrimer composite membranes was prepared by UV photopolymerizing of poly ethylene glycol diacrylate (PEGDA) containing 5~15 wt% pentaerythrityl tetraethylenediamine (PETEDA) dendrimer. The prepared composite membrane was characterized by FT-IR, $^1H$-NMR and DSC. The glass transition temperature ($T_g$) of PEGDA/PETEDA dendrimer composite decreased with the increment of PETEDA dendrimer content. The $CO_2$ separation properties over $CH_4$ were investigated by changing the PETEDA dendrimer content and pressure. The composite membrane containing 10 wt% PETEDA dendrimer exhibited on excellent $CO_2/CH_4$ ideal selectivity of 31.8 and a $CO_2$ permeability of 162.2 barrer.

Influence of the Mesophyll on the Change of electrical Potential Difference of Guard Cells Induced by Red-light and CO2 in Commelina communis L. and Tradescantia virginiana L. (닭의장풀과 자주달개비에서 적색광과 이산화탄소에 의해 유도된 공변세포의 전위차 변화에 미치는 엽육세포의 영향)

  • 이준상
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.383-389
    • /
    • 1993
  • The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and in the detached epidermis have been investigated. Guard cells in intact leaves showed the membrane hyperpolarization in response to light. The biggest induced change of the membrane potential difference (PD) in the guard cells of the intact leaf was 13 m V by light and 42 mV by $CO_2$ in Commelina communis. Similar results were obtained with Tradescantia virginiana. However, there were no changes of membrane PD in detached epidermis. In order to determine the influence of the mesophyll on the changes of membrane PD, infiltration of the mesophyll cells with photosynthetic inhibitors was performed. In CCCP infiltrated leaf discs the guard cell membrane was depolarized slightly by red-light and hyperpolarized by $CO_2$, but in leaf discs infiltrated with DCCD and DCMU the guard cell membrane was hyperpolrized by both red-light and $CO_2$ as the control leaf discs. In azide infiltrated leaf discs the guard cell membrane showed no response to light and there was a much reduced membrane hyperpolarization by $CO_2$ compared to other responses. It was likely that azide caused leaf damage and the activity of cell metabolism was decreased greatly, resulting in small membrane PD changes by $CO_2$ and no changes by redlight. Therefore, it can be suggested that red light was sensed by the mesophyll and the light induced guard cell membrane hyperpolarization was related to energy produced by cyclic-photophosphorylation, but ${CO_2}-induced$ guard cell membrane hyperpolarization was not related to photosynthesis. Alkalisation of the vacuole was observed when the intact leaf was exposed to $CO_2$, indicating that membrane hyperpolarization was mainly the result of proton efflux.efflux.

  • PDF

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.