• Title/Summary/Keyword: $CO_2$ emissions management

Search Result 186, Processing Time 0.028 seconds

A Study on the Application Possibility of Green Building Design Process based on Building Information Modeling(BIM) for Sustainable Architecture (지속가능한 건축을 위한 BIM기반 친환경건축 설계프로세스 적용가능성에 관한 연구)

  • Kim, Mi-Kyoung;Jang, Won-Jun;Choi, Hyun-Ah;Jun, Han-Jong
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.113-122
    • /
    • 2011
  • About 30% of the total annual energy consumption on the earth is used in the architectural activities, including construction, maintenance management, and demonstration of a building. Also, 40% of the natural resource consumption, 50% of $CO_2$ emissions, and 20%~50% of industrial waste emissions are produced from a building. Unfortunately, the percentage of its energy consumption is staidly increasing year by year, about 8% every year, and it recently causes a sustainable architectural concept to come to the fore globally. Indeed, the importance of the sustainable architecture is increasingly becoming a worldwide trend. BIM(Building Information Modeling) is considered a new paradigm and a powerful method in building design, construction and maintenance. BIM has characteristics similar to a building's systems. All of the components in a model have a parametric relationship to each other. Understanding and capitalizing on these interrelationships typically takes numerous iterations that span multiple projects. Optimizing the integrated strategies and technologies for a high-performance, sustainable design requires a continual look at understanding how they work together to deliver the best potential. Throughout all of these concepts, we are going to be using a variety of tools that revolve around a BIM model. Some of the tools will require a heavier use of BIM than others, but all of them will utilize the model geometry you've created as part of your design. This study presents importance and validity of energy performance analyzation in the pre-design phase for the sustainable architecture with the support of Building Information Modeling (BIM) technology.

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier (산적화물선의 에너지 저감 장치들의 성능 비교에 관한 연구)

  • Kim, Eok-Kyu;Lee, Kang-Ki;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The environmental regulations for CO2 emissions from the ship have been established recently, and fuel oil price has been increased continuously. In order to overcome these circumstances, Energy Saving Devices (ESDs) have been developed continuously to reduce the fuel oil consumption and improve the propulsive efficiency. This paper describes the trial performance of PBCF (Propeller Boss Cap Fins), SCHNEEKLUTH duct, Asymmetric rudder bulb and Mewis duct applied to handy-size bulk carriers. As a result, SCHNEEKLUTH duct is more effective than other energy saving devices at the reducing the fuel oil consumption and the improvement of the propulsive efficiency. In addition, it is confirmed that SCHNEEKLUTH duct is really effective in the vibration of the deck house. And the fuel oil consumption can also be reduced through main engine de-rating.

Estimation of Biomass Loss and Greenhouse Gases Emissions from Surface Layer Burned by Forest Fire (산불로 인한 지표층 연소량 및 온실가스 배출량 추정)

  • Lee, Byungdoo;Youn, Ho Jung;Koo, Kyosang;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • Globally, the forest fires are a significant contributor of carbon dioxide and other greenhouse gases in the atmosphere. In this study, fuel load consumed by forest fire and emission of green house gases were analysed in the surface layer. For this, remaining fuel was collected and weighed with the species (Japanese red pine, deciduous) and the forest fire types (surface fire, crown fire) in the 51 forest fires. 8,361 kg/ha fuel load was consumed in deciduous forest damaged by surface fire, and 8,055 kg/ha, 12,333 kg/ha in Japanese red pine burned by surface fire and crown fire. The combustion ratios were 78, 59, and 90%, respectively. 15,856 kg/ha the green house gases such as $CO_2$, $CH_4$, $CH_4$ in deciduous forest burned by surface fire was emitted and 14,834 kg/ha, 22,709 kg/ha in Japanese red pine burned by surface fire and crown fire.

The Relative Importance of Indoor and Outdoor Sources for Determining Indoor Pollution Concentrations in Homes in Seoul, South Korea

  • Lee, Jae Young;Kim, Kyunghwan;Ryu, Sung Hee;Kim, Chang Hyeok;Bae, Gwi-Nam
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.127-138
    • /
    • 2018
  • This study measured indoor and outdoor levels of hydrocarbon volatile organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylene isomers (collectively referred to as BTEX), as well as 13 carbonyl compounds, at 20 homes in Seoul, South Korea. Along with the sampling of BTEX and carbonyls, indoor concentrations of the air pollutants nitrogen oxide (NO) and carbon dioxide ($CO_2$) were also measured at each home. These measurements were used to understand the characteristics of BTEX and carbonyls by calculating the various ratios and correlation coefficients between measured contaminant levels. We found that carbonyls were mostly originated from indoor sources, while BTEX were originated from both indoor and outdoor sources. A high correlation between indoor levels of NO and BTEX indicated that traffic emissions were also an important sources of BTEX.

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

Logistics Network Design of Eco-Friendly industrial estate -Focused on GILC in Busan- (친환경 산업단지의 물류네트워크 설계 - 부산 국제산업물류도시를 중심으로-)

  • Kim, Woong-Sub;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.273-274
    • /
    • 2012
  • Companies are facing challenges to have high competitiveness because of continuous oil price rising and CO2 emissions regulations. Thus, companies are trying hard to construct effective logistics and operation system to achieve high customer service quality and saving cost. Also the ec-friendly idustrial complex is needed. Busan is in process to construct GILC(Global Industry Logistics City) in west Busan province to achieve high competitiveness and support lack of industrial complex. To construct this kind of logistics industrial complex, it needs logistics system through proper policy and freight transportation co-operation. Especially, efficient management through logistics hierarchy construction in industrial complex is very important for low cost and eco-friendly point of view. Therefore, this paper aims to analyze logistics system and suggest operation model to present logistics complex construction base data.

  • PDF

International industrial logistics complex logistics network design (국제산업물류단지 물류네트워크 설계)

  • Shin, Jae Young;Kim, Woong-Sub
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.221-222
    • /
    • 2014
  • Companies are facing challenges to have high competitiveness because of continuous oil price rising and CO2 emissions regulations. Thus, companies are trying hard to construct effective logistics and operation system to achieve high customer service quality and saving cost. Also the ec-friendly idustrial complex is needed. Busan is in process to construct GILC(Global Industry Logistics City) in west Busan province to achieve high competitiveness and support lack of industrial complex. To construct this kind of logistics industrial complex, it needs logistics system through proper policy and freight transportation co-operation. Especially, efficient management through logistics hierarchy construction in industrial complex is very important for low cost and eco-friendly point of view. Therefore, this paper aims to analyze logistics system and suggest operation model to present logistics complex construction base data.

  • PDF

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

A Study on the Effect of Sulfur Content in Fuel Oil on the Emission of Air Pollutants According to Operating Conditions of Small Ship Engines (선박용 소형 엔진에서 연료유 내 황 함유량이 운전 조건에 따라 대기오염물질 배출에 미치는 영향에 관한 연구)

  • Lee, Kyeong-yeol;Rho, Beom-seok;Lee, Won-Ju;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.834-840
    • /
    • 2018
  • In this study, the characteristics of air pollutant emissions from ships' engines have been investigated by conducting E2 and E3 cycle mode tests. A engine 360Ps (Doosan L126TIH engine) and 400kW dynamometer Horiba-Schenck were utilized for engine tests. The FTIR analyzer and SPC were used to measure exhaust gas (NOx, SOx etc.) and PM (particulate matter), respectively. The results showed that the emissions of THC and CO produced from engine were increased with the increase of sulfur content in fuel oils at E2 and E3 cycle modes. The kinetic viscosity of the fuel increased as the sulfur content of the fuel increased, thereby the specific fuel oil consumption (SFC) of the engine improved. This result is considered to be due to improved combustion conditions due to increased average diameters of sprayed particles and due to increased kinetic viscosity under constant fuel injection pressure in this study. In the case of NOx emission, this study showed no significant change in amount of sulfur content.