• Title/Summary/Keyword: $CO_2$ emission amount

Search Result 375, Processing Time 0.031 seconds

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System (고추의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Park, Jung-Ah;Huh, Jin-Ho;Shim, Kyo-Moon;Ryu, Jong-Hee;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.904-910
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of pepper production system. Pepper production system was categorized the field cropping (redpepper) and the greenhouse cropping (greenpepper) according to pepper cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for redpepper production was more than that for greenpepper production system. The value of fertilizer input was 2.55E+00 kg $kg^{-1}$ redpepper and 7.74E-01 kg $kg^{-1}$ greenpepper. Amount of pesticide input were 5.38E-03 kg $kg^{-1}$ redpepper and 2.98E-04 kg $kg^{-1}$ greenpepper. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 5.84E-01 kg $kg^{-1}$ redpepper and 2.81E+00 greenpepper, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that the values of carbon footprint were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for redpepper and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenpepper; especially for 90% and 6% of $CO_2$ emission from fertilizer and pepper production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and pepper production (23%). The emission value of $CO_2$ from greenhouse production was more higher than it of field production system. The result of LCIA (Life Cycle Impact Assessment) was showed that characterization of values of GWP (Global Warming Potential) were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for field production system and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenhouse production system. It was observed that the process of fertilizer production might be contributed to approximately 52% for redpepper production system and 48% for greenpepper production system of GWP.

An Experimental Study of Fuel Economy and Emission Characteristics for a Heavy-Duty DME Bus (대형 DME버스의 연비 및 배기가스 특성에 관한 연구)

  • Oh, Yong-Il;Pyo, Young-Duk;Kwon, Ock-Bae;Beak, Young-Sun;Cho, Sang-Hyun;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.371-376
    • /
    • 2012
  • The experimental test was conducted for a heavy-duty DME bus in JE-05 exhaust gas test mode using a chassis dynamometer, exhaust gas analyzers, and a PM measurement system. The heavy-duty DME bus was not equipped with after-treatment systems such as DOC or DPF. The dynamic behavior, emission characteristics, and fuel economy of the bus were investigated with an 8.0-liter, 6-cylinder conventional diesel engine. The results showed that the dynamic behavior in DME mode was almost the same as in diesel mode. However, there was little difference among the two operation modes for $NO_x$ and CO emissions. THC emissions were lower for DME mode than for diesel mode. Also, the amount of PM emissions was remarkably lower than for the diesel mode because DME contains a greater amount of oxygen than diesel. The data showed that $CO_2$ emissions were almost similar in the two modes but fuel economy (calculated using heating value) was lower for DME mode than for diesel mode.

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

A study on the optimal generating capacity of renewable energy (신재생에너지원의 최적용량에 관한 연구)

  • Kim, Yang-Il;Kim, Kwang-Mo;Lee, Seung-Hyun;Chung, Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.186-188
    • /
    • 2005
  • This paper presents a method of finding the optimal capacity of renewable energy in power system to prepare Kyoto-protocol. In order to determine the capacity of renewable energy, this paper finds a amount of CO2 emission and capacity of power reduction for each energy type. The proposed method performs economic dispatch including the existing facilities, renewable energy and Emission trading, and finds optimal capacity of renewable energy Power satisfying minimum total cost. Finally, the proposed idea is demonstrated with a case study.

  • PDF

Reduction of Green House Gases by Bioenergy Supplying in Korea (국내 바이오에너지 보급에 따른 온실가스 저감 평가)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.

Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(III) - Focused on a Bogeumjari Housing Project - (탄소흡수원을 고려한 개발사업 환경영향평가 방안(III) - 보금자리주택 사업을 중심으로 -)

  • Hwang, Sang Il;Park, Sun Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.235-248
    • /
    • 2011
  • In this study, we investigated the effect of carbon sequestration and sink on the environmental impact assessment of a Bogeumjari Housing Project. Through the case study, we found that, if the project is implemented, the amount of carbon stock tends to decrease greatly while as the amount of the carbon emission tends to greatly increase. Furthermore, we found that the future land use should be planned in detail in order to maintain the soil carbon stock prior to development. Also, enlargement of undeveloped forest land area would be more efficient than that of newly planted area in terms of carbon sequestration.

A STUDY OF LYNDS 1251 DARK CLOUD: II. INFRARED PROPERTIES

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.107-117
    • /
    • 1996
  • We have studied the star forming activities and dust properties of Lynds 1251, a dark cloud located at relatively high galactic latitude. Eleven IRAS point sources identified toward Lynds 1251 are discussed. Estimate of stellar masses, and far-infrared lumnosities of the young stars associated with two prominent IRAS point sources imply that these are T-Tauri stars with masses smaller than $0.3 M_\bigodot$. The low dust temperature of 27 K and low ratio of FIR emission to hydrogen column density are probably due to the lack of internal heating sources. Presumably two low mass young stars do not have enough energy to heat up the dust and gas associated. The dust heating is dominated by the interstellar heating source, and the weaker interstellar radiation field can explain the exceptionally low dust temperatures found in Lynds 1251. The estimated dust mass of Lynds 1251 is just $\~1M_\bigodot$, or about 1/1000 of gas mass, which implies that there must be a substantial amount of colder dust. The infrared flux at $100{\mu}m$ is matching well with $^{13}CO$ peak temperature, while the $^{12}CO$ integrated intensity is matching with the boundary of dust emission. Overall, the dust properties of Lynds 1251 is similar to those of normal dark clouds even though it does have star forming activities.

  • PDF

Study on the introduction and assessment of the Life Cycle Carbon Emissions in Office Buildings

  • Park, Mincho;Lee, Byeongho;Shin, Sung-Woo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • Global warming has become a major issue all over the world. Noting the carbon dioxide emissions as a main contributor to global warming, we studied on the methods to reduce the life cycle building carbon emissions. Green Building Certification Criteria(GBCC) has been implemented since 2002 in Korea, but it doesn't estimate the quantities of the $CO_2$ emissions. Therefore, we studied the ways to implement the $CO_2$ emissions in quantity to GBCC. We select a government building which was rated excellent by the GBCC. This office building was regarded to excellent building by GBCC but not good for energy consumption. It was found energy glutton buildings for research by the Ministry of Public Administration and Security in 2010. This part of GBCC is need to be improved.. Also LCA (Life Cycle assessment) was carried out to estimate on carbon footprint on this office building. So we need to implementing quantitative evaluation on the amount of carbon emissions by GBCC. And it is possible to implementing quantitative evaluation on the amount of carbon emissions. Through this study, we expect that quantitative assessment of life cycle carbon emissions of buildings by the GBCC. Also expect to reduce the carbon emissions of the building by improving the GBCC.

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

The Impacts of Barley Straw Burning Having Different Moisture Contents and Harvesting Timing on Air Pollutant Emission (보릿짚의 수분함량 및 수확시기가 소각시 대기오염물질 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Lee, Jae-Sang;Kim, Chun-Song;Park, Seong-Tae;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.99-103
    • /
    • 2004
  • This study was carried out to determine impacts of burning of barley straw produced from rice-barley double cropping paddy field on air quality by investigating emissions of greenhouse gases ($CO_2$, $CH_4$ and $N_2O$), air pollution gases (CO, $SO_2$, $H_2S$, $NH_3$ and NO) and particulate matters (PM 10 and PM 2.5). When the barley straw at a rate of 4.5 t/ha was burned at open status, the emitted GHGs amounts were $CO_2$ 376.8 kg/l0a, $CH_4$ 1.56 and $N_2O$ 0.06. The amount of CO emission was the largest among air pollution gases. These results showed that the range of $45{\sim}55%$ of total C in barley straw was emitted as $CO_2-C$, followed by CO-C ($6.4{\sim}5.9%$) and $CH_4-C$ ($0.5{\sim}0.7%$). As far as moisture content in barley straw is concerned, the higher moisture content that the barley straw contains, the larger amount of air pollution gases and the higher portion of PM 2.5 in PM 10 were emitted when it burned. In case of harvesting time of barley straw, emission amounts of greenhouse, air pollution gases and PM 2.5 portion in PM 10 had tendency to increase when earlier harvested barley straw was burned.