• Title/Summary/Keyword: $CO_2$ Storage

Search Result 1,450, Processing Time 0.034 seconds

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF

A Study on Energy Storage System for Low Carbon, Green Growth of Electric Railway System (전기철도시스템의 저탄소 녹색성장을 위한 에너지저장시스템에 관한 연구)

  • Lee, Han-Min;Kim, Gil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1161_1162
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and $CO_2$ emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut $CO_2$ to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. Therefore, the energy storage system is needed to be adopted to use regeneration energy when the vehicle is braking.

  • PDF

Ca-Alginate에 고정화된 Calcium Carbonate를 완충제로 사용한 Bifidobacterium longum의 배양 증대와 저장 안정성

  • Lee, Gi-Yong;Yu, Won-Gyu;Kim, Ji-Yeon;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.203-206
    • /
    • 2000
  • Calcium carbonate $(CaCO_3)$ bead immobilized with alginate were developed as buffer system to enhance the cultivation efficiency of bifidobacteria. When Bifidobacteriuim longum KCTC 3128 and HLC 3742 were independently cultivated in 2.5-liter fermenter buffered the $CaCO_3$ bead, NaOH, $Na_2CO_3$, and $NH_4OH$. The proliferation of bifidobacteria and their storage stability were higher in culture broth buffered $CaCO_3$ beads than in culture broth buffered with NaOH, $Na_2CO_3$, and $NH_4OH$. Therefore, $CaCO_3$ bead may be useful as a buffer to enhance of the cultivation efficiency and viability of bifidobacteria.

  • PDF

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

Storage-life Extension of Maengjong-Juk (Phyllostachys pubescens) Sap Using Heat Treatments (열처리에 의한 맹종죽 수액의 저장성 향상)

  • Cho, Eunhye;Kim, Soyoung;Chae, Hee Jeong;Kim, Dong Chung;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.79-81
    • /
    • 2013
  • In order to increase the shelf-life of Phyllostachys pubescens sap heating conditions were investigated. To evaluate the quality changes of Phyllostachys pubescens sap before and after heating at $70^{\circ}C$ for 30 min, pH, total microbial number and sensory characteristics were measured during storage periods at $2^{\circ}C$. During 10 days, the quality and sensory characteristics of Phyllostachys pubescens sap were maintained.

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

Effects on the Storage Life of Satsuma Mandarin by the Pretreatment at various Temperatures (저장전 온도처리가 온주밀감의 저장에 미치는 영향)

  • Kim, Wan-Taek;Lee, Sang-Yong;Kim, Ji-Yong;Kang, Chang-Hee;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.228-233
    • /
    • 1998
  • The storage life of satsuma mandarin(Citrus unshiu Marc. var. miyagawa) by the various pretreatment of temperatures; non-treated, room temperature, $10,\;20^{\circ}C$ and $35^{\circ}C$ were investigated. The pretreated citrus fruits were stored at $4^{\circ}C$, 85% relative humidity. Weight loss of citrus fruits by the pretreatment at $35^{\circ}C$ for 24 hrs was the lowest among that of others. Decay ratio of $35^{\circ}C$ pretreated fruits was increased at initial stages of storage, but was maintained low level after that, compared to other treatments. After 115 days storage, firmness of fruits was lowered by the softening, and decayed fruits were occurred increasingly. Ethylene evolution was increased between $55{\sim}65$ days after storage, and the amount was increasing rapidly after 115 days. It seemed to be derived from decayed fruits and physiological activities. $CO_2$ content in fruit was decreased at initial stages of storage, but was increased between $55{\sim}100$ days during storage periods. Acid content, soluble solids, total sugar and vitamin C were reduced gradually during cold storage, but the difference among treatments was not so great. Pretreated fruits at $35^{\circ}C$ for 24 hrs before cold storage was effective on preventing from weight loss and respiration ratio. Optimum storage period of early variety of Satuma mandarin was regarded for 100 days on the basis of appeareance and taste.

  • PDF

Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System (연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-49
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : minh metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for fuel cell and Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-9}\;and\;10^{-10}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

Studies on Brewing of Apple Wine -Apple wine containing lower concentration of alcohol- (사과주(果實酒)양조(釀造)에 관(關)한 연구(硏究) -저농도주정함유(低濃度酒精含有) 사과주에 관(關)하여-)

  • Chung, Ki-Taek;Hong, Soon-Duck;Yu, Tae-Shick;Song, Hyung-Ik
    • The Korean Journal of Mycology
    • /
    • v.6 no.1
    • /
    • pp.29-41
    • /
    • 1978
  • This study aims to brew apple wine containing lower concentration of alcohol by fermentation and to retain $CO_2$ gas in apple wine, and investigation for the possibility of storage at room temperature was performed. A Saccharomyces sp. was proved to be acceptable for production of base wine as its higher fermentation rate at $20{\sim}25^{\circ}C$. However, B-2 was most reasonable for post-fermentation of apple wine as this strain strongly ferments sugars at low temperature $(4^{\circ}C)$. The yield of apple juice increased by maceration of apple pulps. The yield was about 5 % more than that of the unmacerated juice, whereas acid content was decreased by 10% compared with control. When stored apple wine containing 9% alcobol was introduced $1{\sim}3%$ sucrose at $7{\sim}8^{\circ}C$ for 100 days or more, the $CO_2$ pressure of apple wine in bottle shows $3kg/cm^2$ by bottle-pressure meter. It showed good storage of the wine at room temperature. $CO_2$ gas pressure in apple wine containing 6% alcohol, $5{\sim}10%$ hop extract, and 2% sugar was $2kg/cm^2$, he result also showed possibility of storage. Whereas 6% concentration of alcoholic apple wine without hop extract caused unusual fermentation during storage at the same condition. The desirable conditions for high quality apple wine should have $CO_2$ pressure of $2kg/cm^2$ or more and should be added $1{\sim}2% sugar to base wine. From these results, it can be concluded that the brewing of lower alcoholic apple wine is possible.

  • PDF