References
-
Y. Qin, Z. Chen, W. Lu and K. Amine, 'Electrolyte additive to improve performance of
$MCMB/LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$ Li-ion cell', J. Power Sources, 195, 6888-6892 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.040 - V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy Environ. Sci. 4, 3243- 3262 (2011). https://doi.org/10.1039/c1ee01598b
- H. Kitaura, A. Hayashi, K. Tadanaga and M. Tatsumisago, 'Electrochemical performance of all-solidstate lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes', Electrochimica Acta, 55, 8821-8828 (2010). https://doi.org/10.1016/j.electacta.2010.07.066
- Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, 'High-energy cathode material for long-life and safe lithium batteries', Nature Materials, 8, 320-324 (2009). https://doi.org/10.1038/nmat2418
-
H. Liu, Y. Yang and J. Zhang, 'Reaction mechanism and kinetics of lithium ion battery cathode material
$LiNiO_{2}$ with$CO_{2}$ ', J. Power Sources, 173, 556-561 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.083 - R. Kanno, 'Secondary batteries-lithium rechargeable systems-lithium-ion positive electrode: lithium nickel oxide', Encyclopedia of Electrochemical Power Sources, 297-306 (2009).
- L. Baggetto, N. J. Dudney and G. M. Veith, 'Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS', Electrochimica Acta, 90, 135-147 (2013). https://doi.org/10.1016/j.electacta.2012.11.120
-
J. Yang, X. Zhang, Z. Zhu, F. Cheng and J. Chen, 'Ordered spinel
$LiNi_{0.5}Mn_{1.5}O_{4}$ nanorods for high-rate lithium-ion batteries', J. Electroanalytical Chemistry, 688, 113-117 (2013). https://doi.org/10.1016/j.jelechem.2012.09.042 -
O. Toprakci, H. A.K. Toprakci, Y. Li, L. Ji, L. Xue, H. Lee, S. Zhang and X. Zhang, 'Synthesis and characterization of
$xLi_{2}MnO_{3}{\cdot}(1x)LiMn_{1/3}Ni_{1/3}Co_{1/3}O_{2}$ composite cathode materials for rechargeable lithium-ion batteries', J. Power Sources, 241, 522-528 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.155 -
J. Li, S. Jeong, R. Kloepsch, M. Winter and S. Passerini, 'Improved electrochemical performance of
$LiMO_{2}$ (M=Mn, Ni, Co)-$Li_{2}MnO_{3}$ cathode materials in ionic liquid-based electrolyte', J. Power Sources, 239, 490-495 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.015 -
S. F. Amalraj, B. Markovsky, D. Sharon, M. Talianker, E. Zinigrad, R. Persky, O. Haik, J. Grinblat, J. Lampert, M. Schulz-Dobrick, A. Garsuch, L. Burlaka and D. Aurbach, 'Study of the electrochemical behavior of the "inactive"
$Li_{2}MnO_{3}$ ', Electrochimica Acta, 78, 32-39 (2012). https://doi.org/10.1016/j.electacta.2012.05.144 - N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim and S.-S. Kim, 'Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode', J. Power Sources, 161, 1254-1259 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.049
- S. Dalavi, P. Guduru and B. L. Lucht, 'Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes', J. Electrochem. Soc., 159, A642-A646 (2012). https://doi.org/10.1149/2.076205jes
- I. A. Profatilova, S.-S. Kim and N.-S. Choi, 'Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate', Electrochimica Acta, 54, 4445-4450 (2009). https://doi.org/10.1016/j.electacta.2009.03.032
- G. Nagasubramanian and C. J. Orendorff, 'Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable', J. Power Sources, 196, 8604-8609 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.078
- N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries', J. Power Sources, 221, 6-13 (2013). https://doi.org/10.1016/j.jpowsour.2012.07.121
-
M. S. Ding, K. Xu and T. R. Jow, 'Effects of tris(2,2,2- trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of
$LiPF_{6}$ in EC-PC-EMC of 3:3:4 weight ratios', J. Electrochem. Soc. 149, A1489-A1498 (2002). https://doi.org/10.1149/1.1513556 - K. Xu, M. S. Ding, S. Zhang, J. L. Allen, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. physical and electrochemical properties', J. Electrochem. Soc. 150, A161-A169 (2003). https://doi.org/10.1149/1.1533040
- Y. Abu-Lebdeh and I. Davidson, 'High-voltage electrolytes based on adiponitrile for Li-ion batteries', J. Electrochem. Soc. 156, A60-A65 (2009). https://doi.org/10.1149/1.3023084
-
M. Kunduraci and G.G. Amatucci, 'Synthesis and characterization of nanostructured 4.7 V
$Li_{x}Mn_{1.5}Ni_{0.5}O_{4}$ spinels for high-power lithium-ion batteries', J. Electrochem. Soc. 153, A1345-A1352 (2006). https://doi.org/10.1149/1.2198110 - H. Nakai, T. Kubota, A. Kita and A. Kawashima, 'Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes', J. Electrochem. Soc. 158, A798-A801 (2011). https://doi.org/10.1149/1.3589300
- S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries', J. Power Sources, 162, 1379-1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
Cited by
- Substituted Dioxaphosphinane as an Electrolyte Additive for High Voltage Lithium-Ion Cells with Overlithiated Layered Oxide vol.161, pp.4, 2014, https://doi.org/10.1149/2.100404jes