• Title/Summary/Keyword: $CO_2$ Emission Assessment

Search Result 209, Processing Time 0.021 seconds

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Life Cycle Assessment of CdTe Photovoltaic System (CdTe 태양광 발전 시스템의 전과정평가)

  • Kim, Yeunhee;Huh, Jinho;Jeong, Jaewoo;Kang, Jeongrim;Choi, Jongdoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • The conventional energy-production system by burning fossil fuels releases many pollutants and carbon dioxide($CO_2$) to the environment. Therefore, many countries pay attention to new and renewable energy and invest in the development of these new technologies for the future energy security. One of the most promising of these technologies is a photovoltaic system. In this study, Life Cycle Assessment(LCA) is carried out to analyse the environmental issues(e.g. global warming, abiotic resource depletion) of CdTe photovoltaic system. The spatial and temporal scope of this study was set in Korea during 2004~2005. We assumed that CdTe photovoltaic system was installed in Mokpo where the amount of solar irradiation was higher than other places in Korea. Based on the present data and some assumptions, greenhouse gas emission was 39.2g $CO_2$-eq./kWh. Therefore the electricity produced by CdTe photovoltaic system is more environmentally friendly than the conventional power generation system.

  • PDF

Life Cycle Assessments of Long-term and Short-term Environmental Impacts for the Incineration of Spent Li-ion Batteries (LIBs) (전과정평가를 이용한 폐리튬이온전지의 소각에 대한 장/단기 환경영향 평가)

  • Jeong, Soo-Jeong;Lee, Ji-yong;Sohn, Jeong-soo;Hur, Tak
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.163-169
    • /
    • 2006
  • A Life Cycle Assessment (LCA) study was carried out to identify and improve the environmental aspects associated with the present incineration system of spent Li-ion batteries (LIBs) in Korea. The environmental impact associated with the landfill of the incineration ash was also assessed in this study, while so far it was excluded in most studies. It was found out that the $CO_{2}$ emission from the electricity generation as well as the incineration process and heavy metals emissions to air and water accounted for about 90% of total environmental impacts. In particular, the effect of the emission of heavy metals were dominant. In oder to improve the current incineration system environmentally, it is needed to incinerate the wastes like spent LIBs which contained relatively high portion of heavy metals separately from other combustible wastes. On the other hand, the effect of the landfill of ash after incineration was insignificant since the ash from the incineration process was chemically stable.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Development of Gaseous Pollutant Emission Factor by Incineration of Barley & Wheat among Agricultural Residues (영농부산물 소각에서 발생하는 가스상 오염물질의 배출계수 개발 -맥류를 중심으로-)

  • Min-Wook Kim;Joon-Young Roh;Ji-Yun Woo;Dong-Eun Lee;Hong-Sung Chang;Seung-Jin Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • The current study involved the calculation of air pollutant emission factors (EFs) generated from the incineration of agricultural residues. The process included sample collection, weight measurement, moisture measurement, incineration system configuration, and concentration measurement. The average CO emission factor of gaseous air pollutants from the incineration of barley and wheat agricultural residues was calculated as 0.08289 kg/kg and 0.06665 kg/kg, respectively, whereas the average NOX emission factor for barley and wheat agricultural residues was determined to be 0.00518 kg/kg and 0.00185 kg/kg, respectively. In the existing air pollutant emission calculation manual, the EF is presented only for barley. Therefore, in this study, we have introduced the EF for wheat, previously absent in the calculation manual. Additionally, the air pollutant calculation manual presents the EF of air pollutants as one value, but in this study, EF values corresponding to 2.5% and 97.5% were presented in consideration of the distribution of experimental values as shown in EMEP/EEA data.

Study on the introduction and assessment of the Life Cycle Carbon Emissions in Office Buildings

  • Park, Mincho;Lee, Byeongho;Shin, Sung-Woo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2014
  • Global warming has become a major issue all over the world. Noting the carbon dioxide emissions as a main contributor to global warming, we studied on the methods to reduce the life cycle building carbon emissions. Green Building Certification Criteria(GBCC) has been implemented since 2002 in Korea, but it doesn't estimate the quantities of the $CO_2$ emissions. Therefore, we studied the ways to implement the $CO_2$ emissions in quantity to GBCC. We select a government building which was rated excellent by the GBCC. This office building was regarded to excellent building by GBCC but not good for energy consumption. It was found energy glutton buildings for research by the Ministry of Public Administration and Security in 2010. This part of GBCC is need to be improved.. Also LCA (Life Cycle assessment) was carried out to estimate on carbon footprint on this office building. So we need to implementing quantitative evaluation on the amount of carbon emissions by GBCC. And it is possible to implementing quantitative evaluation on the amount of carbon emissions. Through this study, we expect that quantitative assessment of life cycle carbon emissions of buildings by the GBCC. Also expect to reduce the carbon emissions of the building by improving the GBCC.

Evaluation of the Amount of Gas Generated through Combustion of Wood Charcoal and Agglomerated Charcoal Depending on Air Ventilation (숯과 성형숯의 연소를 통해 배출되는 가스 발생량 및 실내공간 환기량 평가)

  • JU, Young Min;JEONG, Hanseob;CHEA, Kwang-Seok;AHN, Byung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.847-860
    • /
    • 2020
  • This study was conducted into combustion characteristics and gases generated by the combustion of charcoal and agglomerated charcoal distributed in the domestic using a combustion chamber based on the average space per crater of a charcoal-grilled restaurant in South Korea. Each of the three types of charcoals and agglomerated wood charcoals was analyzed for fuel and combustion characteristics. In addition, the concentration changes of CO, CO2, NOx, and O2 were measured for 20 minutes depending on ventilation. As a result, CO yield without ventilation was measured in the range of 1390 to 4703 ppm, and CO yield with ventilation decreases about 29.8% to 57.4%. CO2 yield without ventilation was measured in the range of 1.34% to 2.42%, and CO2 yield was about 44.1% to 53.6% when the emission was more than about 1.5% at 10 minutes. The NOx yield was divided into two cases where the NOx yield was continuously increased because of incomplete combustion, emitted ranging from 29 ppm to 47 ppm, and where emission was constant after 1 minute in the range of 9 ppm to 18 ppm. The NOx yield with ventilation tends to be similar to the without ventilation, and NOx yield decreases up to 62.5%. Therefore, it could be used for health risk assessment with the simulation of the usage environment of charcoal and agglomerated wood charcoal.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.