DOI QR코드

DOI QR Code

Evaluation of the Amount of Gas Generated through Combustion of Wood Charcoal and Agglomerated Charcoal Depending on Air Ventilation

숯과 성형숯의 연소를 통해 배출되는 가스 발생량 및 실내공간 환기량 평가

  • JU, Young Min (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • JEONG, Hanseob (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • CHEA, Kwang-Seok (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • AHN, Byung-Jun (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • LEE, Soo Min (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science)
  • Received : 2020.09.14
  • Accepted : 2020.10.23
  • Published : 2020.11.25

Abstract

This study was conducted into combustion characteristics and gases generated by the combustion of charcoal and agglomerated charcoal distributed in the domestic using a combustion chamber based on the average space per crater of a charcoal-grilled restaurant in South Korea. Each of the three types of charcoals and agglomerated wood charcoals was analyzed for fuel and combustion characteristics. In addition, the concentration changes of CO, CO2, NOx, and O2 were measured for 20 minutes depending on ventilation. As a result, CO yield without ventilation was measured in the range of 1390 to 4703 ppm, and CO yield with ventilation decreases about 29.8% to 57.4%. CO2 yield without ventilation was measured in the range of 1.34% to 2.42%, and CO2 yield was about 44.1% to 53.6% when the emission was more than about 1.5% at 10 minutes. The NOx yield was divided into two cases where the NOx yield was continuously increased because of incomplete combustion, emitted ranging from 29 ppm to 47 ppm, and where emission was constant after 1 minute in the range of 9 ppm to 18 ppm. The NOx yield with ventilation tends to be similar to the without ventilation, and NOx yield decreases up to 62.5%. Therefore, it could be used for health risk assessment with the simulation of the usage environment of charcoal and agglomerated wood charcoal.

본 연구는 국내 숯불구이 음식점의 화구당 평균 공간을 바탕으로 제작된 모형 연소방을 이용하여 국내에서 유통되고 있는 숯과 성형숯의 연소 조건에 따라 발생하는 연소 가스와 연소 특성에 관한 연구를 수행하였다. 각각 3종의 숯과 성형숯의 연료 특성과 연소 특성을 분석하였다. 또한, 밀폐 조건과 환기 조건으로 구분하고 총 20분의 연소과정 동안 발생하는 CO, CO2, NOx의 농도와 O2 농도의 변화량을 분석하였다. 분석 결과, CO의 발생량은 밀폐 조건에서 1390~4703 ppm의 범위로 측정되었으며, 환기 시 약 29.8%~57.4%의 환기율을 보였다. CO2는 밀폐 조건에서 1.34%~2.42%의 범위로 나타났으며, 환기시 특정 시점(10분)에 1.5% 이상 발생한 시료에서 44.1%~53.6%의 환기율을 보였다. NOx의 발생량은 밀폐 조건의 경우 불완전 연소로 인해 지속적으로 발생량이 증가하여 29 ppm~47 ppm의 범위로 발생하는 경우와 특정 시점(1분) 이후 9 ppm~18 ppm의 범위로 비교적 일정한 발생량을 보이는 경우로 나뉘었다. 환기 조건의 NOx 배출량은 밀폐 조건과 유사한 경향을 보였으며, 최대 62.5%의 환기율을 보였다. 따라서, 본 연구 결과를 바탕으로 숯과 성형숯의 사용환경을 모사하여 인체 유해성 평가에 활용 가능할 것으로 판단된다.

Keywords

References

  1. Chia, C.H., Joseph, S.D., Rawal, A., Linser, R., Hook, J.M., Munroe, P. 2014. Microstructural characterization of white charcoal. Journal of Analytical and Applied Pyrolysis 109: 215-221. https://doi.org/10.1016/j.jaap.2014.06.009
  2. Choi, Y.S., Euh, S.H., Oh, K.C., Kim, D.H., Oh, J.H. 2015. A study on combustion characteristics in terms of the type of fuel supply device (feeder) of a wood pellet boiler. Journal of Energy Engineering 24(2): 120-128. https://doi.org/10.5855/ENERGY.2015.24.2.120
  3. Huang, H.L., Lee, W.M.G., Wu, F.S. 2016. Emissions of air pollutants from indoor charcoal barbecue. Journal of Hazardous Materials 302: 198-207. https://doi.org/10.1016/j.jhazmat.2015.09.048
  4. Jelonek, Z., Drobniak, A., Mastalerz, M., Jelonek, I. 2020. Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling. Science of the Total Environment 747: 141267. https://doi.org/10.1016/j.scitotenv.2020.141267
  5. Jeoung, T.Y., Yang, S.M., Kang, S.G. 2020. Study on foel specificity and harmful air pollutants factor of agglomerated wood charcoal. Journal of the Korean Wood Science and Technology 48(2): 253-266. https://doi.org/10.5658/WOOD.2020.48.2.253
  6. Jo, T.S., Choi, J.W., Lee, O.K. 2007. Physicochemical changes of woody charcoals prepared by different carbonizing temperature. Journal of the Korean Wood Science and Technology 35(3): 53-60.
  7. Ju, Y.M., Lee, H.W., Kim, A.R., Jeong, H.S., Chea, K.S., Lee, J.J., Ahn, B.J., Lee, S.M, 2020. Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open-hearth kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. https://doi.org/10.5658/WOOD.2020.48.2.181
  8. Kabir, E., Kim, K.H., Yoon, H.O. Ahn, J.W., Hong, O.F., Sohn, J.R. 2010. Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. Journal of Hazardous Materials 174(1-3): 492-499. https://doi.org/10.1016/j.jhazmat.2009.09.079
  9. Korea Forest Service. 2018a. Act on the sustainable us of timbers. Act. No. 15391.
  10. National Institute of Forest Science. 2018. Standard and specification of wood products. Notification No. 2018-8.
  11. Korea Forest Service. 2018b. Regulation on promotion of use and supply of forest biomass energy. Notification No. 2018-72.
  12. Lee, D.Y., Kim, B.R. 2010. Analysis of functional characteristics of the commercial wood charcoal in Korea. Journal of the Korean Wood Science and Technology 38(6): 480-489. https://doi.org/10.5658/WOOD.2010.38.6.480
  13. Lee, J.J., Kim, E.J., Lee, S.M., Ju, Y.M., Ahn, B.J. 2016. Upgrading of the hydrophobicity of Larix Kaempferi and Liriodendron tulipifera via torrefaction. New&Renewable Energy 12(4): 70-76. https://doi.org/10.7849/ksnre.2016.12.12.4.070
  14. Pandey, S.K., Kim, K.H., Kang, C.H., Jung, M.C., Yoon, H. 2009. BBQ charcoal as an important source of mercury emission. Journal of Hazardous Materials 162(1): 536-538. https://doi.org/10.1016/j.jhazmat.2008.05.050
  15. Ren, F., Li, Z., Chen, Z., Xu, Z., Yang, G. 2010. Experimental investigations into gas/particle flows in a down-fired boiler: influence of the vent air ratio. Energy & fuels 24(3): 1592-1602. https://doi.org/10.1021/ef901243c
  16. The minister of environment, 2020, Enforcement decree of the clean air conservation act. Act. No. 859.
  17. Vicente, E.D., Vicente, A., Evtyugina, M., Carvalho, R., Tarelho, L.A.C., Oduber, F.I., Alves, C. 2018. Particulate and gaseous emissions from charcoal combustion in barbecue grills. Fuel Processing Technology 176: 296-306. https://doi.org/10.1016/j.fuproc.2018.03.004