DOI QR코드

DOI QR Code

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation

시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용

  • 유종희 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 김건엽 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 소규호 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 강기경 (국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2011.11.10
  • Accepted : 2011.12.11
  • Published : 2011.12.31

Abstract

This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

남양주의 실제 상추재배 농가를 대상으로 전과정평가를 적용하여 bottom-up 방식의 사례분석을 수행하였다. 사례분석을 위하여 현장을 방문하여 청취 조사를 하였고, 대상 농가는 유기농가 2곳, 무농약 인증 농가 1곳, 관행농가 2곳이었다. 현장자료 수집과 산정에서 데이터 값의 오차범위가 넓어지는 것을 고려하여 추가의 냉난방이 없는 가을 1 작기를 기준으로 평가하였고, 민감도 분석과 시나리오 분석을 추가하였다. 전과정 목록분석과 영향평가는 'PASS(4.1.3)' 소프트웨어를 사용하였다. GTG 목록작성 결과 상추 1 kg 생산하는데 투입되는 물질 중 비료와 에너지 투입이 가장 높은 비중을 차지하였고, 농약이 가장 작은 값을 나타냈다. 특히 육묘단계가 없었던 농가 1을 제외한 모든 농가에서 전기의 투입량이 가장 높게 나타났다. 상추 1 kg 생산하는데 영농작업으로 말미암아 포장에서 직접 배출되는 $CO_2$, $CH_4$, $N_2O$는 각각 6.79E-03 (농가 1), 8.10E-03 (농가 2), 1.82E-02 (농가 3), 7.51E-02 (농가 4), 1.61E-02 (농가 5) kg $kg^{-1}$ lettuce이었다. 전과정 목록분석 결과 시설 상추 1 kg 생산하는데 발생하는 온실가스 발생량은 $CO_2$가 배출량 대부분을 차지하였고, 그 다음이 $N_2O$, $CH_4$ 순으로 나타났다. 농가별 $CO_2$ 배출량은 각각 2.92E-01 (농가 1), 3.76E-01 (농가 2), 4.11E-01 (농가 3), 9.40E-01 (농가 4), $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (농가 5)이었다. 공정별 온실가스 발생량을 분석한 결과, $CO_2$는 에너지생산 과정에서 발생하는 양이 가장 많았다. 관행농은 에너지생산에 의한 배출 비중이 유기농보다 적었고 대신 복비 생산에 의한 $CO_2$ 배출 비중이 그 차이만큼 늘었다. 또한, 무기질 비료 투입이 많아질수록 아산화질소 발생에서 상추재배 공정이 차지하는 비중이 높게 나타났는데 농가 1, 2는 87%, 농가 3은 64%를 나타냈다. 시설 상추 생산체계의 탄소성적 값은 농가별로 각각 3.40E-01 (농가 1), 4.31E-01 (농가 2), 5.32E-01 (농가 3), 1.08E+00 (농가 4), 6.14E-01 (농가 5) kg $CO_2$-eq. $kg^{-1}$ lettuce였다. 민감도 분석 결과 유기질 비료 민감도가 무기질 비료 민감도 보다 높았고, 이 중 유박의 민감도가 가장 높았고, 복합비료의 민감도가 가장 낮았다. 또한, 온실가스 변화량 중 아산화질소 발생량이 가장 민감하게 변화하였다. 전기 사용량 변화에 따른 민감도 분석은 이산화탄소의 민감도가 가장 높았고, 다음이 메탄이었고, 아산화질소는 민감도가 0에 가까웠다. 따라서 시설재배 상추생산에서 탄소배출량 감소를 위하여 질소비료 종류와 시비방법 및 시설내 전기사용에 대한 합리적 영농법에 대한 연구가 필요할 것으로 판단되었다. 상추 재배에서 여름 작기에 대한 탄소 성적 시나리오 분석결과 생산량이 봄이나 가을에 비하여 약 1/2~1/3정도 작았고, 이에 따라 탄소성적도 30~40배 높은 값을 보였다.

Keywords

References

  1. Ahn, S.J. 2005. Stochastic analysis for uncertainty of life cycle assessment with Monte-Carlo simulation. M.S. University of Ajou, Korea. pp. 7-9, 29-30.
  2. Amlinger, F., S. Peyr, and C. Cuhls. 2008. Greenhouse gas emission from composting and mechnical biological treatment, Waste Manage Res 26(1):47-60. https://doi.org/10.1177/0734242X07088432
  3. de Boer, I.J.M. 2003. Environmental impact assessment of conventional and organic milk production. Livestock Production Science 80:69-77. https://doi.org/10.1016/S0301-6226(02)00322-6
  4. Hanegraaf, M.C., E.E. Biewinga, and G. van der Bul. 1998. Assessing the ecologycal and economic sustainability of energy crops. Biomass and Bioenergy 15(4/5):345-355. https://doi.org/10.1016/S0961-9534(98)00042-7
  5. IPCC (Intergovernmental Panel on Climate Change). 1996. IPCC Good practice guidance and uncertainty management in national greenhouse gas inventories.
  6. KFIA (Korea Fertilizer Industry Association). 2007. fertilizer production data. Korea Fertilizer Industry Association. Seoul, Korea.
  7. KWA (Korea Waste Association). 2007. Agricultural waste data. Korea Waste Association. Seoul, Korea.
  8. MAFF (Ministry of Agriculture, Forestry and Fisheries). 2003. Development of Life Cycle Assessment methodology for environment impact assessment. National Institute for Agro-Envrionmental Sciences, Japan.
  9. Mia i Canals, L., G.M. Burnip, and S.J. Cowell. 2006. Evaluation of the environmental impact of apple production using life cycle assessment: case study in New Zealand. Agriculture, Ecosystem and Environment 114:226-238. https://doi.org/10.1016/j.agee.2005.10.023
  10. MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheres). 2004. A study on establishing effective management system for equipped agricultural input wastes. C2004-A1. Ministry for Food, Agriculture, Forestry and Fisheres. Seoul, Korea.
  11. MKE (Ministry of Knowledge Economy). Software program PASS v4.1.
  12. NAIS (Namyangju-si Agricultural Technology Center). 2009. The status of local agriculture. http//www.nais.or.kr
  13. Park. J.A., S.C. Jung, J.H. Huh, K.H. So, and K.A. Roh. 2010. Life Cycle Assessment for open field and greenhouse peppers. Journal of the Korean society for life cycle assessment 11(1):91-102.
  14. Peterson, S.O., K. Regina, A. Pollinger, E. Rigler, L. Valli, S. Yamulki, M. Esala, C. Fabbri, E. Syasalo, and F.P. Vinther. 2006. Nitrous oxide emissions from organic and conventional crop rotation in five European countries. Agriculture, Ecosystem and Environment 112:200-206. https://doi.org/10.1016/j.agee.2005.08.021
  15. Pluimers, J.C., C. Kroeze, E.J. Bakker, H. Challa, and L. Hordijk. 2000. Quantifying the environmental impact of production in agriculture and horticulture in The Netherlands: which emissions do we need to consider? Agricultural Systems 66:167-189. https://doi.org/10.1016/S0308-521X(00)00046-9
  16. RDA (Rural Development Administration). 2009. Rice cropping technology for greenhouse gas reduction. National Institute of Animal Science. pp. 11.
  17. Shin, S.M. 2008. Life cycle assessment and improvement of green-roof considering materials for maintenance. master's thesis, KAIST, Korea. pp. 19, 28-30, 40-41.
  18. Simapro software v7.2, ecoinvent process system.
  19. So, K.H., J.A. Park, G.Z. Lee, K.M. Shim, J.H. Ryu, and K.A. Roh. 2010. Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Rice (Oryza sativa L.) Production System. Korean J. Soil. Sci. 43(5):716-721.
  20. So, K.H., J.A. Park, J.H. Huh, K.M. Shim, J.H. Ryu, G.Y. Kim, H.C. Cheol, and D.B. Lee. 2010. Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System. Korean J. Soil. Sci. 43(6): 904-910.

Cited by

  1. Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1157
  2. LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1143
  3. A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals vol.47, pp.5, 2014, https://doi.org/10.7745/KJSSF.2014.47.5.374
  4. A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.502