• Title/Summary/Keyword: $CO_2$ Capture process

Search Result 167, Processing Time 0.02 seconds

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.

Enhancement of carbon dioxide absorption rate with metal nano particles (금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진)

  • Choi, Young Ju;Youn, Min Hye;Park, Ki Tae;Kim, In Ho;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6439-6444
    • /
    • 2015
  • With increasing concern about global warming, CCS (Carbon dioxide capture and storage) has attracted much attention as a promising technology for reducing $CO_2$ emission. It is necessary to develop the cost-effective absorbents materials in order to rapid commercialize CCS technologies. In this work, he study for the promotion of absorption rate in $CO_2$ capture system using metal nanoparticle were investigated. Three kinds of metal nanoparticle, cobalt, zinc, and nickel, were prepared by wet and dry method and effect of preparation method on the absorption rate of $CO_2$ were compared. Among the tested using pH method, nickel nanoparticle prepared by wet method showed the most significant improvement of $CO_2$ absorption rate. In case that metal nanoparticle is applied to CCS process, it is expected to be more efficient in $CO_2$ capture process due to reduce the size of absorption tower.

Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology (가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향)

  • Lee, Bo Ram;Ryu, Jun-Hyung;Han, Kunwoo;Park, Da-Hye;Lee, Kun-Hong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.232-243
    • /
    • 2010
  • Gas hydrates are crystalline solids composed of water and gas molecules. Water molecules are linked through hydrogen bonding and create cavities(host lattice) that can capture a large variety of guest molecules under appropriate conditions, generally high pressure and low temperature. Recently, many researchers try to apply gas hydrates to industrial processes to capture greenhouse gases due to the facts that the process is eco-friendly and target gas molecules can be preferentially captured. In this paper, we introduced recent studies on $CO_2$ and $CO_2-N_2$ mixture hydrates to evaluate the feasibility of industrial application of gas hydrate technology to $CO_2$ capture process. Specifically, we put emphasis on the technical feasibility of $CO_2$ separation in steel industry using gas hydrate formation principles.

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance (핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;KIM, YOUNGEUN;NAM, SUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.562-570
    • /
    • 2016
  • At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

Variation of the CO2 Capture Reaction by Ammonia Solution with Temperature (온도에 따른 암모니아 용액에 의한 CO2 포집 반응의 변화 양상)

  • Kim, Soo-Yeon;Choi, Ye-Seul;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.896-904
    • /
    • 2011
  • The features of the capture reaction of $CO_2$ by ammonia solution have been investigated along with the effect of temperature on the reaction based upon computer program-utilizing calculation and thermodynamic estimation. The stable region of $CO{_3}^{2-}$ was observed to increase with temperature and the change of the stable region of $CO{_3}^{2-}$ with temperature was greater than the temperature variation of the stable region of other carbonate species. The distribution diagram for $NH_4{^+}-NH_3$ system was constructed and the rise of temperature resulted in the decrease of the stability of $NH_4{^+}$ ion, which was thought to be due to the endothermic nature of its acidic dissociation. Considering the introduction of $Ca^{2+}$ ion in the carbon capture reaction by $NH_4{^+}$, the temperature was observed to be important in the determination of the order of reaction between carbonate ion and these cations. The removal process of $CO_2$ gas by ammonia solution was presumed to occur in open system and the temperature variations of the concentration of carbonate system species along with their total concentration were calculated for the proper control and design of the real process.

Analysis of CO2 Capture Efficiency in Relation to the Inlet Moisture Content of the Regenerator in the Continuous Process by using Sorbent Analysis (연속공정에서 고체흡수제의 입자분석을 통한 재생반응기 주입 수분량에 따른 CO2 회수효율 영향 분석)

  • Lee, Do-Young;Kim, Ki-Chan;Park, Young Cheol;Han, Moon-Hee;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.654-658
    • /
    • 2012
  • In this study, $CO_2$ capture efficiency in relation to the inlet moisture content of the regenerator was investigated using potassium-based sorbents in the continuous process composed of two bubbling fluidized-bed reactors, where solid outlet configuration in the regenerator was converted from underflow to overflow. XRD (X-ray Diffraction), SEM (Scanning Electron Microscope) and TGA were performed to find out the effect of water pre-treatment according to inlet moisture content in the regenerator. The $K_2CO_3{\cdot}1.5H_2O$ structure of solid sorbents has been increased as inlet moisture content of the regenerator increased. As a result, the $CO_2$ capture efficiency increased as the $K_2CO_3{\cdot}1.5H_2O$ structure of solid sorbents increased since the reactivity of the sorbents has been improved by that structure generated by the water pre-treatment. And $CO_2$ capture efficiency increased about 3~8% after sorbent outlet configuration of the regenerator was changed underflow to overflow.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.

Effect of Isopropanol on CO2 Absorption by Diethylenetriamine Aqueous Solutions (이소프로판올을 포함한 디에틸렌트리아민 상분리 흡수제의 CO2 흡수 특성)

  • Lee, Hwa Young;Seok, Chang Hwan;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • A drawback in the CO2 capture process using an aqueous amine solution is the high energy requirement for the regeneration process. In order to overcome this disadvantage, this study investigated CO2 capture characteristics using a biphasic absorbent in which isopropanol (IPA) was introduced into an aqueous solution of diethylenetriamine (DETA). When the IPA composition exceeded 20 wt% in 20 wt% DETA aqueous solution, the absorbent phase was liquid-liquid separated into a CO2-rich phase and a CO2-lean phase because of the low solubility of the salt formed by the reaction of CO2 with DETA in isopropanol. When the isopropanol composition in the DETA aqueous solution increased, the phase volume ratio of the CO2-rich phase to the volume of the CO2-lean phase increased; and, accordingly, the CO2 in the CO2-rich phase was more concentrated. The results of absorbing CO2 in a packed tower using 20 wt% DETA + IPA + water absorbent confirmed that both the CO2 absorption capacity and the absorption rate were higher than that of the 20 wt% DETA aqueous solution. When a biphasic absorbent composed of DETA + IPA + water is applied to CO2 capture, it can be expected to concentrate CO2 because of phase separation and thereby reduce regeneration energy owing to volume reduction of the CO2-rich phase.

Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation (효과적인 CO2 분리를 위한 혼합 기질 분리막 충진 소재로서의 2차원 나노물질)

  • Khirul Md Akhte;Hobin Jee;Euntae Yang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.155-181
    • /
    • 2024
  • In recent years, significant research has been conducted to enhance the performance of existing membranes for efficient CO2 capture, aiming to expand their application in carbon capture processes. Membrane technology has emerged as a promising carbon capture approach to addressing the net-zero challenge due to its cost and energy efficiency, continuous operation, and compact process size. Among the various types of membranes studied, mixed-matrix membranes (MMMs) have been proposed as an alternative to conventional membranes to enhance the efficiency of gas separation processes. Various common 2D nanomaterials, characterized by their ease of modification, functionalization, and compatibility with other materials, have been used to create efficient MMMs for gas separation. This article comprehensively reviews the recent developments in MMMs using 2D nanomaterials. It also discusses the current challenges and prospects of 2D nanomaterial-based membranes for CO2 separation and capture.

Pre-Combustion Capture of Carbon Dioxide Using Principles of Gas Hydrate Formation (가스 하이드레이트 형성 원리를 이용한 연소전 탈탄소화 연구)

  • Lee, Hyun-Ju;Lee, Ju-Dong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.650-654
    • /
    • 2008
  • The emission of carbon dioxide from the burning of fossil fuels has been identified as a major contributor to green house emissions and subsequent global warming and climate changes. For these reasons, it is necessary to separate and recover $CO_2$ gas. A new process based on gas hydrate crystallization is proposed for the $CO_2$ separation/recovery of the gas mixture. In this study, gas hydrate from $CO_2/H_2$ gas mixtures was formed in a semi-batch stirred vessel at a constant pressure and temperature. This mixture is of interest to $CO_2$ separation and recovery in Integrated Coal Gasification (IGCC) plants. The impact of tetrahydrofuran (THF) on hydrate formation from the $CO_2/H_2$ was observed. The addition of THF not only reduced the equilibrium formation conditions significantly but also helped ease the formation of hydrates. This study illustrates the concept and provides the basic operations of the separation/recovery of $CO_2$ (pre-combustion capture) from a fuel gas ($CO_2/H_2$) mixture.