• Title/Summary/Keyword: $CO_2$저감

Search Result 951, Processing Time 0.108 seconds

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF

Development of a Model and Methodology for the Analysis of the $CO_2$ Emissions Reduction Effect through the Introduction of the G2B Systems in e-government : ECRE Approach (전자정부 G2B 시스템 도입에 따른 탄소저감효과 분석을 위한 모델 및 방법론 개발)

  • Lim, Gyoo-Gun;Lee, Dae-Chul;Lim, Mi-Hwa;Moon, Jong-In
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.163-181
    • /
    • 2010
  • As a part of efforts to reduce the global emissions of greenhouse gases, the Kyoto Protocol was signed by major developed countries ("Annex I" countries). According to the Kyoto protocol, the Emission Trading Scheme that derives a trading market of the $CO_2$ emission rights is appeared. It causes that business institutions give lots of efforts to reduce $CO_2$ by using new environmentally sound technologies or increasing efficiency in production. On the while there have been several studies trying to develop a methodology to measure the effect of $CO_2$ reduction and its monetary value. In this research we suggest ECRE (Evaluation of $CO_2$ Reduction in E-transformation) model which can measure the $CO_2$ reduction effect through the introduction of G2B system. ECRC model was developed based on the IPCC methodology. ECRC model measures the two major effects of the $CO_2$ reduction which are '$CO_2$ reduction effect from transportation' and '$CO_2$ reduction effect from the decrease of paper use'. In this paper, we calculate the economic effect of $CO_2$ reduction with the case of the G2B system in Korea. This research suggests a basic methodology to measure the $CO_2$ reduction performance for the e-transformed institution.

Reduction Effect of CO2 Emission on BIS Using Tier 3 Methodology - A Case Study on Daejun-Chungjoo Project - (Tier 3 방법론을 활용한 BIS 사업의 CO2 저감효과 분석 - 대전-청주 간 광역BIS 사업을 중심으로 -)

  • Chung, Younshik;Song, Taijin;Kim, Jeongwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.375-381
    • /
    • 2011
  • This study presents an analysis of $CO_2$ emission reduction effect on bus information system (BIS) which is operated to improve various services of bus transit such as rapid and on-time service. Although the Intergovernmental Panel on Climate Change (IPCC) released three methodological types of models for analyzing the amount of greenhouse gas reduction, this study used the Tier 3 method that is the most concrete one. A case study was performed to a 8.3 km section of Daejun-Chungjoo BIS system, and dataset required to the Tier 3 method was obtained from ITS-based surveillance systems. The study result showed that the reduction effect of $CO_2$ on BIS operation was yearly $39.45tCO_2/km$. Therefore, such effect can be potentially useful to a measurement of effectiveness (MOE) of BIS projects hereafter.

Estimation of CO2 Abatement Cost Considering Allocative Inefficiency of Inputs for the Korean Steel Industry: A Cost Function Approach (국내 철강업의 생산요소 간 비효율적 배분을 고려한 CO2 저감비용 산정 및 분석: 비용함수접근법)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.453-472
    • /
    • 2014
  • Analyzing the effects of carbon emissions trading, which is scheduled to be introduced in Korea in 2015, requires an accurate assessment of $CO_2$ abatement costs by both industries and firms. Firms faced with regulatory constraints are unlikely to minimize their production costs due to rising production costs caused by allocative inefficiency of inputs. The use of a distance function would results in underestimation of $CO_2$ abatement costs, because it fails to capture the allocative distortion costs. Recognizing the disadvantage of the previous approach, first, this paper tests for allocative efficiency of input for the Korean steel industry over the period 1990-2010, then derives the marginal $CO_2$ abatement costs by applying a cost function approach. The hypothesis of allocative efficiency in inputs is rejected and the steel industry pays an annual average cost of 92,000 won in removing an additional ton of $CO_2$ over the sample period.

The Experimental Study on Mixing and Quality Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 배합 및 품질 특성에 관한 실험적연구)

  • Jo, Jun-Hee;Kim, Yong-Jic;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • In this study, $CO_2$ reduction type quaternary component high fluidity concrete was produced with more than 80% reduction in cement quantity to increase the use of industrial byproducts and enhance construction performance, thereby reducing $CO_2$ emissions. Furthermore, the quality properties, and $CO_2$ reduction performance of this concrete were evaluated. As a result of the quality evaluation of quaternary component blended high fluidity concrete with $CO_2$ reduction, the target performance could be achieved with a 80% or more reduction of cement quantity by mixing a large amount of industrial byproducts. The required performance level was obtained even though the flow, dynamic, and durability characteristics decreased a little compared to conventional mix. In addition, to analyze the $CO_2$ reduction performance of quaternary component blended high fluidity concrete with $CO_2$ reduction, the life cycle assessment (LCA) of the concrete was performed and the results showed that compared to the conventional mix, the carbon emissions decreased by 62.2% and the manufacturing cost by 24.5%.

The Effect of Reducing Carbon Emissions, According to the Introduction of U-City System (U-City 시스템 도입에 따른 탄소배출량 저감 효과 분석)

  • Jung, Tae-Woong;Moon, Su-Jung;Kim, Yoon-Kwan;Koo, Jee-Hee
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Since $CO_2$ emissions are recognized as the biggest contribution to climate change, the needs and international efforts for $CO_2$ emissions reduction are increasing. The developed countries are driving strategies to boost green industry as a new growth engine. Following this global trend, based on the ongoing U-City project as a new city model, it is required to analyze the changes of $CO_2$ emissions in U-City to identify its potential for reducing carbon dioxide emissions. This study aims at identifying the potential and effects on $CO_2$ reduction by analyzing the level of $CO_2$ emissions before and after introducing U-City. Bundang-Gu, Seongnam-City & Ilsan-Gu, Goyang-City among Phase I new tow ns were selected as model cities before introducing U-City and Dongtan-Dong, Hwaseong-City as a model city after introducing U-City. The result showed 30% reduction of $CO_2$ emissions in the comparison of tw o models.

Structural Performance and CO2 Reduction Evaluation of the Ultra simple Wide-shaped section Beam-to-Column Weak Axis Connection (초간편 H형강 기둥-보 약축접합부의 구조성능 및 CO2 저감량 평가)

  • Kim, Sang-Seup;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.615-627
    • /
    • 2011
  • There have been few researches on the connection technology for steel structures, so the research outputs and the outcome of the technology development are still insufficient. The bracket-type connection should be improved for efficient constructability and $CO_2$ reduction. It should be replaced by a new type of weak-axis connection that has better structural performance and less $CO_2$ emission. Since the structural performance and safety of the new type of weak-axis connection must first be verified, however, a study on $CO_2$ reduction will be conducted. Therefore, this study looked into the structural performance of the bracket-type details, standard details, and ultra-simple details. It evaluated the requirements for connection materials and $CO_2$ emission. It was found that the ultra-simple weak-axis connection has thebest structural performance and the least $CO_2$ emissions, so it is deemed capable of replacing the bracket-type weak-axis connection.

The Solidification of $CO_2$ by Using Waste Cement and Inorganic Waste By-Products (폐(廢)콘크리트 미분말(微粉末)과 무기성(無機性) 폐부산물(廢副産物)을 이용(利用)한 $CO_2$ 고형화(固形化))

  • Ahn, Ji-Whan;Yoo, Kwang-Suk
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.3-10
    • /
    • 2009
  • This paper will introduce the study which is the solidification and reduction of $CO_2$ green house gas, by using inorganic industrial wastes such like waste cement, steel making slag, incineration ash and so on. These inorganic wastes contain a large quantity of CaO content in common, which is easily reacted with CaO resulting in formation of $CaCO_3$. It will be suggested in this study that the necessary of the reduction and solidification of $CO_2$ gas with using industrial inorganic wastes is for building the Korea carbon storage model in this study.

A study on Estimation of CO2 Abatement Cost in Korean Offshore Fishery (우리나라 근해어업의 CO2 배출 저감비용함수 추정)

  • Shin, Yongmin;Jeong, Gyeowoon
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.399-420
    • /
    • 2018
  • This study has attempted environmental economic analysis on the cost structure of offshore fisheries based on fishery management data published by the Fisheries Research Institute to examine the effect of the environmental policy on the fisheries for the effective implementation of the Paris Convention. Under the assumption that both fisheries and carbon dioxide are simultaneously produced, the cost structure of offshore fisheries were analyzed. Cost function in a translog form was estimated and SUR (Seemingly Unrelated Regression) model was used for the analysis. Here, $CO_2$ emission of offshore fishery was calculated by using National Federation of Fisheries Cooperatives' data on supply of tax exemption oil (2003~2016). The cost function estimation showed that there is a weak disposition between catches and $CO_2$ emissions during the sample period, and the marginal abatement cost (MAC) is estimated at 1,457 won per year. In addition, for the same period, when 1% of $CO_2$ per horsepower is to be reduced MAC increases by 2.2%, and when 1% of $CO_2$ per 1 ton of catch is to be reduced, MAC increases by 1.4%.

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.