• Title/Summary/Keyword: $COP_c$

Search Result 318, Processing Time 0.036 seconds

A Study on the Performance Characteristics of a Heat Pump System using Stack Wast Heat in Fuel Cell Vehicles (스택 폐열을 이용한 연료전지 자동차용 열펌프 시스템의 성능 특성에 관한 연구)

  • Jeon, Byungyong;Ko, Wonbin;Park, Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.325-330
    • /
    • 2016
  • This study was conducted to develop a heating system for a fuel cell-driven electric vehicle. The system consists of a compressor, an expansion device and three heat exchangers. A conventional air source heat exchanger is used as primary heat exchanger of the system, and an additional water source heat exchanger is used as a pre-heater to supply heat to the upstream air of the primary heat exchanger. On the other hand, the third heat exchanger consists of a water-to-refrigerant heat exchanger. The heat source of the pre-heater and the water-refrigerant heat exchanger is the waste heat from the fuel cell's stack. In the experiment, the indoor and the outdoor air temperature were fixed, and the compressor speed, EEV opening and waste heat temperature were varied. The results indicate that the $COP_h$ of the proposed system is 3.01 when the system is operating at a 1,200 rpm compressor speed, 50% EEV opening, and $50^{\circ}C$ waste heat source temperature in air pre-heater operation. However, when the system uses a water-refrigerant heat exchanger, the $COP_h$ increases to up to 9.42 at the same compressor speed and waste heat source temperature with 75% EEV openings.

Improvement of Heat Pump Heating Performance by Selective Heat Storage Using Air Heat of Inside and Outside Greenhouse (온실 내외부 공기열의 선택적 축열에 의한 히트펌프 난방성능 개선)

  • Kwon, Jin Kyung;Kim, Seung Hee;Jeon, Jong Gil;Kang, Youn Koo;Jang, Kab Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • In this study, the design and performance test of the air to water heat pump capable of producing hot water for greenhouse heating by using the surplus solar heat inside the greenhouse and the air heat outside greenhouse as the selective heat source were conducted. The heat storage operations using the surplus solar heat and the outside air heat were designed to be switched according to the setting temperature of the greenhouse in consideration of the optimum temperature range of the crop. In the developed system, it was possible to automatically control the switching of heat storage operation, heating and ventilation by setting 12 reference temperatures on the control panel. In the selective heat storage operation with the surplus solar heat and outside air heat, the temperature of thermal storage tank was controlled variably from $35^{\circ}C$ to $52^{\circ}C$ according to the heat storage rate and heating load. The heat storage operation times using the surplus solar heat and outside air heat were 23.1% and 30.7% of the experimental time respectively and the heat pump pause time was 46.2%. COP(coefficient of performance) of the heat pump of the heat storage operation using the surplus solar heat and outside air heat were 3.83 and 2.77 respectively and was 3.24 for whole selective heat storage operation. For the comparative experiment, the heat storage operation using the outside air heat only was performed under the condition that the temperature of the thermal storage tank was controlled constantly from 50 to $52^{\circ}C$, and COP was analyzed to be 2.33. As a result, it was confirmed that the COP of the heat storage operation using the surplus solar heat and outside air heat as selective heat source and the variable temperature control of the thermal storage tank was 39% higher than that of the general heat storage operation using the outside air heat only and the constant temperature control of the thermal storage tank.

A Performance Evaluation of a 400RT Vertical type Geothermal System installed in a R&D and Office Building in Spring (연구.사무공간의 냉난방용으로 설치된 400RT급 수직형 지열시스템의 봄철 성능평가)

  • Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.9-14
    • /
    • 2008
  • 400RT geothermal system which is consist with vertical-typed 112 geothermal heat exchangers is measured and evaluated in spring, 21st${\sim}$24th May 2008. As the results, the average temperature difference between inlet and outlet of geothermal pipes is $1{\sim}2^{\circ}C$ and that of cool water supply is $2{\sim}6^{\circ}C$, when being normally operated. Despite temperature fluctuations by cooling loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $3^{\circ}C$. The geothermal system COPs are calcluated as 2.92${\sim}$3.92 in every 12 hours.

  • PDF

Performance Characteristics Study on an Alternative Refrigerant in Low Temperature Applications (저온용 대체냉매의 성능 특성 연구)

  • SHIN, JEONG-SUB;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.462-469
    • /
    • 2016
  • This paper presents the results of thermodynamic cycle analysis and performance tests of alternative mixtures in low temperature applications. Two near-azeotropic binary mixtures R-152a/R-1270 (35:65 by wt.%) and R-290/E170 (35:65 by wt.%) are considered in this study. They have zero ODP (Ozone Depletion Potential) and much lower GWP (Global Warming Potential) than R-404A which is an alternative of R-502. Refrigeration cycle characteristics such as cooling capacity, coefficient of performance, suction and discharge pressures and temperatures are compared to those for the baseline refrigerants (R-502 and R-404A) cycles. The performance tests are conducted at the evaporation and condensation temperatures of $5^{\circ}C$ and $45^{\circ}C$, subcooling and superheating temperatures of $5^{\circ}C$, respectively. Performance comparisons between baseline and alternative refrigerants are conducted on the same cooling capacity. The system performance of newly proposed refrigerant mixtures show promising results.

Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant (배기가스 배열을 활용한 R245fa 냉매용 고온 히트펌프 건조기의 해석 및 검증)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, the performance characteristics of a high temperature heat pump dryer that is able to raise the air temperature up to $80^{\circ}C$ by using waste heat as heat source were investigated numerically. The main components of the heat pump dryer were modeling as a compressor, condenser, evaporator and expansion device, and R245fa was selected as refrigerant. Experiments were also conducted to validate the numerical data. As a result, when the evaporator air inlet temperature increased from $50^{\circ}C$ to $65^{\circ}C$, the numerical results of the hot air temperature at outlet and heat pump COP were about 8~11% and 5~8% higher than that of experimental ones, respectively.

The Performance Analysis of Sea Water Heat Pump applied Low GWP Refrigerants (Low GWP 냉매를 적용한 해수열 히트펌프의 성능해석)

  • Lim, Seung-Taek;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.92-97
    • /
    • 2016
  • In this study, the seawater Heat Pump System using seawater with temperature of annual domestic conditions ($0^{\circ}C$ to $25^{\circ}C$) is designed in order to compare its performance against the Heat Pump using unused heat of seawater. As a potential replacement for current refrigerants that exacerbate global warming and ozone delpetion, a Low GWP refrigerant's performance is analyzed. The basic water to water Heat Pump system is chosen and three commercial refrigerants - R134a, R410a, R32 - are used to compare against new Low GWP refrigerant R1234ze. When seawater with temperature of $25^{\circ}C$ is used, the performance change showed maximal increase in COP, 38.3%. low GWP refrigerant R1234ze, showed great performance characteristics reach to 5.242 and Existing commercial refrigerant, R134a showed only less than 0.03 performance difference against R1234ze. The study confirms notable performance of R1234ze refrigerant through simulation as environmentally friendly refrigerant for domestic seawater Heat Pump.

An experimental research on temperature accuracy in the refrigerator system with a variable speed compressor

  • Jung, Young-Seok;Hong, Boo-Pyo;Bakhtiar, Agung;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.264-269
    • /
    • 2011
  • A precision of temperature control in the manufacturing process would be an important factor and become the main key to control production quality. Mostly manufacture machinery used oil as a coolant in their system so an accurate oil temperature control system become an absolute need in industrial field. This paper presents a experiment research to control the oil temperature constant at target point, in this experiment is $35^{\circ}C$ by using an inverter attached in compressor to varying the compressor speed. This control has been completed and tested through an experiment with different heat load of 4kW, 6kW, 7kW, 8kW and 10kW given under temperature constant room conditioned as $25^{\circ}C$. The results had shown the temperature deviation in the refrigerator has around $0.2^{\circ}C$ and the COP is 2.5 gained at 8kW and 10kW.

  • PDF

Cooling Performance Test of 2-stage Heat Pump System Using River Water as a Heat Source (하천수율원이용 2단압축 열펌프시스템 냉방성능평가)

  • Kim, J.R.;Lee, Y.S.;Jang, K.C.;Ra, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2129-2134
    • /
    • 2004
  • The present study has been conducted to develop a heat pump system using river water of temperature energy which not only belongs to unutilized energy but is a kind of good heat source due to maintain its temperature in a certain degree regardless of seasonal variation. The system did not meet the proposed performance after setup. In this paper, the system performance affected by refrigerant Oil, by pressure drop, or by other factors has been discussed. The followings were obtained : (1) Refrigerant Oil mixture rate was 2.5 in weight percentage, (2) Pressure drop through evaporator was 29.1kPa($3.1^{\circ}C$ in saturated tempearture) (3) Pressure drop from the end of evaporator to compressor inlet was 39.8kPa($4.0^{\circ}C$ in saturated tempearture). (4) The system performance can to be improved by modifying a part of pipe line to compressor, and reducing pressure drop through heat exchangers.

  • PDF

The Characteristics of Heating Performance on Small Sized Ammonia Absorption System (소형 암모니아 흡수식 냉난방기의 냉방성능 특성)

  • Jin, Byoung-Ju;Oh, Seung-Taek;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Sim-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.198-202
    • /
    • 2008
  • Refrigeration plants using absorption principles have been around for many years with initial development taking place over 100 years ago. Although the majority of absorption cycles are based on water-LiBr cycle, many applications exist where ammonia-water can be used, especially where lower temperatures are desirable. In both systems water is used as working fluid, but in quite different ways: as a solvent for the ammonia system, and as refrigerant for the lithium bromide system. This explains that the lithium bromide absorption system is strictly limited to evaporation temperatures above $0^{\circ}C$. The main industrial applications for refrigeration are in the temperature range below $0^{\circ}C$, the field for the binary system ammonia-water.

  • PDF

Characterization of the grown - in defects in the large diameter silicon crystal grown by Czochralski method (대구경 규소 Czochralski 단결정 속의 결정 결함 규명)

  • 이보영;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • Grown-in defects like OISF and FPD in the large diameter(> 8 inch)of silicon crystal are characterized. It was revealed that the presence of the ring-patterned OISF would deterorate the minority life time of the silicon crystal. Through the cooling experiment from the $1250^{\circ}C$, the nucleation of the OISF was confirmed to follow the homogeneous nucleation and growth process. In addition to OISF nucleus, crystal originated particle, which was known to be closely related with FPD (Flow Pattern Defects), was found to depend on the pulling rate of the crystal. Combination of the lower rate of the pulling and the faster cooling near the $950^{\circ}C$ is proposed to be effective method in reducing the generation of these grown-in defects.

  • PDF