• Title/Summary/Keyword: $CH_4$의 기여 농도

Search Result 53, Processing Time 0.029 seconds

Studies of Short-Term Variability of Methane in the Moo-Ahn Observatory Site in Korea (무안지역 메탄가스의 단주기적 농도변화에 대한 평가)

  • Choi, Gyoo-Hoon;Youn, Yong-Hoon;Kim, Chang-Hee;Cho, Young-Min;Kim, Ki-Hyeon
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.327-338
    • /
    • 2001
  • In this study, the short-term variability of methane concentrations were investigated over 24-hr scale. The data obtained form the Moo-Ahn (MAN) station located in the western coastal area of Korea were analyzed from various respects to describe its distribution characteristics over short term scale. The MAN data were compared with those obtained from the two major background observatory sites: Point Barrow (Alaska) and Mauna Loa (Hawaii). The mean concentration of methane for the whole study period, when computed using the daily mean values, was found to be 1898${\pm}$85.3ppb (N=812). The mean values for the two comparable sites were observed to be 1832${\pm}$29.6ppb (N=823) for Point Barrow and 1745${\pm}$14.8ppb (N=818) for Mauna Loa. According to the analysis of frequency distribution. the mode value for the MAN area is found to be 1900ppb, but the mean concentration for Point Barrow and Mauna Loa are shown to have relatively low values of 1850 and 1750ppb, respectively. When examined over diurnal scale, the CH$_4$data for the MAN area exhibit a rather consistent trend; CH$_4$level is low during the daytime (after 6:00 A.M) and rises during the nighttime. The findings of the generally enhanced methane concentration in the MAN station may be explained form various respects. One of the most important reasons is that the MAN area is under the influence of various source processes relative to all the other stations under consideration. The short-term distribution patterns for the MAN station are hence characterized not only by the high methane concentration but also by the high oscillation in its CH$_4$concentration level.

  • PDF

Field Application of Biocovers in Landfills for Methane Mitigation (매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가)

  • Jung, Hyekyeng;Yun, Jeonghee;Oh, Kyung Cheol;Jeon, Jun-Min;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.322-329
    • /
    • 2017
  • Two pilot-scale biocovers (PBCs) were installed in a landfill, and the methane ($CH_4$) concentrations at their inlets and outlets were monitored for 240 days to evaluate the methane removability. Consequently, the packing materials were sampled from the PBCs, and their potential $CH_4$ oxidizing abilities were evaluated in serum vials. The $CH_4$ concentration at the inlet of the biocovers was observed to be in the range of 23.7-47.9% (average = 41.3%, median = 42.6%). In PBC1, where a mixture of soil, earthworm cast, and compost (7:2:1, v/v) was employed as the packing material, the $CH_4$ removal efficiency was evaluated to be between 60.7-85.5%. In PBC2, which was filled with a mixture of soil, earthworm cast, perlite, and compost (4:2:3:1, v/v), the removal efficiency was evaluated to be between 29.2-78.5%. Although the packing materials had an excellent $CH_4$ oxidizing potential (average oxidation rate for $CH_4=180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), $CH_4$ removal efficiency in PBC1 and PBC2 decreased to the range of 0-30% once the packing materials in the PBCs were clogged and channeled. Furthermore, seasonal effects exhibited no significant differences in the $CH_4$ removal efficiency of the biocovers. The results of this study can be used to design and operate real-scale biocovers in landfills to mitigate $CH_4$ buildup.

Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions (고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향)

  • Kim, Jin-Ho;Ryu, Jae-Hong;Kang, Suk-Hwan;Yoo, Young-Don;Kim, Jun-Woo;Go, Dong-Jun;Jung, Moon;Lee, Jong-Min
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • In this work, we performed the methanation reaction using synthesis gas ($H_2/CO_2$) for the process to produce synthetic natural gas (SNG) for $4^{th}$ methanation reactor in SNG process proposed by RIST-IAE. Experimental conditions were changed with temperature, pressure and space velocity. At this time, $CO_2$ conversion, $CH_4$ selectivity and $H_2$ concentration after reaction were investigated. As a result, $CH_4$ selectivity by the $CO_2$ methanation increased with lower space velocity and higher pressure. On the other hand, in the case of temperature, the maximum value was shown at $320^{\circ}C$. From these results, it was found that the optimum condition of the fourth reactor suitable for the SNG process was obtained.

Effect of Acid Treatment on Extractability and Properties of Agar (산처리(酸處理) 조건(條件)이 한천(寒天)의 수율(收率) 및 성질(性質)에 미치는 영향(影響))

  • Park, Young-Yi;Lee, Chul;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.319-325
    • /
    • 1985
  • Agar was prepared from domestic agarophyte (Gelidium amansii) by a process of acid extraction. Optimal conditions in the acid treatment of the seaweed and the gelling properties of the agar thus prepared were investigated. The yield and gel strength of the control (the agar extracted with distilled water) showed 13,3% and 306g/$cm^2$, respectively. The yield of 38.7% was obtained when agar was extracted with 0.007N Hydorchloric acid while the gel strength of agar,511g/$cm^2$ was observed with the agar extracted with 0.005N Hydorchloric acid solution. The agar extracted with hydrochloric acid solution showed excellent properties of agar at the acid concentration range 0.005N-0.01N The cooking time of 60 min. was found to be effective to the yield and also to the gelling property of the agar and the cooking longer than 60 min. was proved to be destructive to agar. In general, yield and gelling properties of the agar obtained showed a close relation to the acid concentration and cooking time, but no consistent influence on the contents of ash and sulfur trioxide.

  • PDF

Experimental Study on Autothermal Reformation of Methanol with Various Oxygen to Methanol Ratios for Fuel Cell Applications (연료전지용 메탄올 자열 개질기의 산소-메탄올 비율에 따른 성능 실험)

  • Hwang, Ha-Na;Shin, Gi-Soo;Jang, Sang-Hoon;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • The use of Hydrogen as a fuel is receiving considerable attention and as a result, research on novel methods of hydrogen production is necessary so that the hydrogen demands in the future can be satisfied. This study presents experimental data on methanol Autothermal Reformation that quantifies the relationship between the oxygen-to-methanol ratio ($O_2/CH_3OH$) and reformer efficiency. For each catalyst configuration, the $O_2/CH_3OH$ was varied from 0.1 to 0.4, with an increment of 0.05, to investigate the effects of $O_2/CH_3OH$ on the reactor performance, including temperature profile, conversion, and efficiency. $O_2/CH_3OH$ was increased from 0.15 to 0.20, and the catalyst bed temperature increased by $235^{\circ}C$ to approximately $550^{\circ}C$. The catalyst bed temperature increased with increasing $O_2/CH_3OH$ as the reaction shifted from endothermic to exothermic reaction and as a result, excess heat, which raised the reactor temperature, was generated. The reactor performance was shown to be highly dependent on $O_2/CH_3OH$. The optimum $O_2/CH_3OH$ = 0.30 found in the experimental tests is 30% higher than the theoretical optimum of 0.23. This is attributed to a combination of factors such as the concentrations of the $O_2$ and $CH_3OH$ gas, reaction rate, catalyst effects, heat loss from the reactor, and the difference between the actual amounts of reaction products formed and the theoretical amounts of the reaction products.

Microstructure and Microdefects of Diamond Thin Films Deposited by MPECVD (마이크로웨이브 화학증착법에 의한 다이아몬드 박막의 미세구조오 미세결함)

  • Lee, Se-Hyeon;Lee, Yu-Gi;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.833-840
    • /
    • 1996
  • Diamond thin films were deposited on p-type (100) Si wafers using MPECVD. Prior to deposition, ultrasonic striking was done to improve density of nucleation sites with dimond powder of 40~$60\mu$m size. Then diamond thin films were deposited at $^900{\circ}C$, 40Torr and 1000W microwave power using ${CH}_{4}$ and ${H}_{2}$ gases. The purity, the morphology and the microstructur'e and microdefects of diamond thin films were characterized by Raman spectroscopy, SEM and TEM, repectively. In Raman spectroscopy the peaks of non-diamond phase increased as ${CH}_{4}$, concentration increased. In SEM, the morphology of diamond thin films varied from crystalline to cauliflower as ${CH}_{4}$, concentration increased. As ${CH}_{4}$ con centration increased, the density of defects increased, with most defects being {III} twin. ${MTP}_{5}$, were formed with five (II]) planes. As these (Ill) Planes were twinned, ${MTP}_{5}$, represented five-fold symmetry. ]n the interfaces, defects in diamond thin films fanned out from small regions implying nucleation sites.

  • PDF

Development of Integrated NG Fuel Processor for Residential PEMFC system (가정용 고분자연료전지 시스템을 위한 통합형 천연가스 개질기 개발)

  • Seo Yutaek;Seo Dong Joo;Jeong Jin Hyeok;Yoon Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.231-234
    • /
    • 2005
  • 수소 기반의 에너지 사회는 중소규모 분산 발전과 연료 전지 자동차에서 시작될 거라는 예측이 지배적이다. 가정용 고분자 연료전지 시스템은 상업화에 가장 가까운 소규모 분산 발전 시스템중의 하나이며, 에너지기술연구위원에서는 가정용 고분자 연료전지에 수소를 공급하기 위한 천연가스 수증기 개질시스템의 개발을 진행해 왔다. 효율 향상과 제작의 용이성, 그리고 소형화에 초점을 맞추어 개발된 prototype-I은 $2.0Nm^3/hr$의 순수 수소 생산 용량을 가지고 있으며, 수증기 개질기와 수성가스 전이 반응기 수중기 생성 장치, 그리고 반응열 공급에 필요한 버너 등을 이중 동심원관에 통합한 형태이다. 수중기 개질과 수성가스 전이 반응을 거쳐 나오는 개질 가스의 조성은 $72.3\%\;H_2,\;4.8\%\;CH_4,\;0.7\%\;CO,\;22.2\%\;CO_2$이며, 이때 S/C 비율은 2.5였다. 고분자 연료 전지 공급 시 요구되는 CO 농도가 10ppm 이하이기 때문에, 본 시스템에는 선택적 산화 반응기를 2단으로 설치하여 CO. 농도를 10ppm 이하로 낮추어주었다. 전체 시스템의 열효율은 LHV 기준으로 $68\%$. Prototype-I의 운전을 통해 설계 개선안을 도출하였으며, 이를 적용해 제작한 prototype-II가 시험 운전 중이다,. 통합된 개질 시스템에서는 각 단위 반응기사이의 열교환을 최적화하여 단위 반응들이 적정 온도 범위에서 일어나도록 유도하는 것이 중요하다. Prototype-II는 수증기 개질 반응기와 WGS 반응기, 수증기 생성 장치 사이의 열교환율을 향상시켜 농도를 $2.5\%$로 감소시키면서 CO의 농도는 $1\%$이하로 유지하였다. 이 결과를 바탕으로 얻어진 메탄 전환율은 $87\%$이고, 열효율은 LHV 기준으로 $75\%$이다. 아울러 개선점을 적용한 선택적 산화 반응기를 제작하였다. 개질 가스와 산소의 혼합을 유도하고, 반응기 온도의 제어를 통해 선택적 산화 반응의 속도와 선택성을 향상시키고자 한다. 시스템의 운전을 통해 메탄 전환율과 열효율의 개선을 진행할 예정이다.

  • PDF

Evaluation of Mitigation Technologies and Footprint of Carbon in Unhulled Rice Production (벼 생산 단계에서 탄소발생량과 감축요소 평가)

  • Lee, Deog Bae;Jung, Soon Chul;So, Kyu Ho;Jeong, Jae Woo;Jung, Hyun Chul;Kim, Gun Yeob;Shim, Gyo Moon
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.129-142
    • /
    • 2012
  • This study was carried out to evaluate carbon footprint during unhulled rice production and to compare mitigation technologies of methane, main carbon source during rice production, Carbon footprint of unhulled rice was a sum of $CO_2$ emission of agri-materials manufacture, rice cultivation and waste treatment. It was emitted 1.40 kg $CO_2$ during unhulled rice production, its distribution was 71.1% by $CH_4$ emission of rice cultivation, 11.8% of $N_2O$ emission by nitrogen application and 7.6% of complex fertilizer manufacture. $CH_4$ emission could be mitigated by some technologies; cultivation of the early maturing rice variety emitted lower by 44.4% than the mid maturing variety, intermittent drainage of submerged water by 43.8% than the continuous flooding condition, direct seeding by 32.0% than transplanting cultivation, no-ploughing by 20.9% than ploughing cultivation. It means that LCA on Global Warming Potential and the statistical data on innovated technical practice are key tools to systemize Measurable-Reportable-Verifiable (MRV) system for carbon footprint and carbon emission trade in the farm base.

Pyrolytic Reaction Pathway of Dichloromethane in Excess Hydrogen (과잉수소 반응분위기에서 Dichloromethane 열분해 반응경로에 관한 연구)

  • Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.638-643
    • /
    • 2006
  • Pyrolytic reaction study of dichloromethane ($CH_{2}Cl_{2}$) in excess hydrogen was performed to investigate pyrolytic reaction pathways at a pressure of 1 atm with residence times of 0.3~2.0 sec in the temperature range of $525{\sim}900^{\circ}C$. A constant feed molar ratio $CH_{2}Cl_{2}$:$H_{2}$ of 4:96 was maintained through the experiment. Reagent loss and product formation were monitored by using an on-line gas chromatograph, where batch samples were analyzed by GC/MS. Complete destruction(99%) of the parent reagent was observed at temperature near $780^{\circ}C$ with residence time over 1 sec. Major products observed were $CH_{3}Cl$, $CH_{4}$, $C_{2}H_{4}$, $C_{2}H_{6}$, and HCl. Minor products included $CHClCCl_{2}$, CHClCHCl, $CH_{2}CHCl$, and $C_{2}H_{2}$. The pyrolytic reaction pathways to describe the important features of intermediate product distributions and reagent loss, based upon thermodynamic and kinetic principles, were suggested. The results of this work provided a better understanding of pyrolytic decomposition processes which occur during the pyrolysis of $CH_{2}Cl_{2}$ and similar chlorinated methanes.

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method (압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발)

  • Chung, Jong Kook;Lee, Ki Yong;Lee, Sang Gon;Lee, Eun Mi;Mo, Sun Hee;Lee, Dae Keun;Kim, Seung Gon
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.