DOI QR코드

DOI QR Code

Field Application of Biocovers in Landfills for Methane Mitigation

매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가

  • Jung, Hyekyeng (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yun, Jeonghee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Oh, Kyung Cheol (Green Environmental Complex Center) ;
  • Jeon, Jun-Min (Green Environmental Complex Center) ;
  • Ryu, Hee-Wook (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2017.08.23
  • Accepted : 2017.09.20
  • Published : 2017.12.28

Abstract

Two pilot-scale biocovers (PBCs) were installed in a landfill, and the methane ($CH_4$) concentrations at their inlets and outlets were monitored for 240 days to evaluate the methane removability. Consequently, the packing materials were sampled from the PBCs, and their potential $CH_4$ oxidizing abilities were evaluated in serum vials. The $CH_4$ concentration at the inlet of the biocovers was observed to be in the range of 23.7-47.9% (average = 41.3%, median = 42.6%). In PBC1, where a mixture of soil, earthworm cast, and compost (7:2:1, v/v) was employed as the packing material, the $CH_4$ removal efficiency was evaluated to be between 60.7-85.5%. In PBC2, which was filled with a mixture of soil, earthworm cast, perlite, and compost (4:2:3:1, v/v), the removal efficiency was evaluated to be between 29.2-78.5%. Although the packing materials had an excellent $CH_4$ oxidizing potential (average oxidation rate for $CH_4=180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), $CH_4$ removal efficiency in PBC1 and PBC2 decreased to the range of 0-30% once the packing materials in the PBCs were clogged and channeled. Furthermore, seasonal effects exhibited no significant differences in the $CH_4$ removal efficiency of the biocovers. The results of this study can be used to design and operate real-scale biocovers in landfills to mitigate $CH_4$ buildup.

본 연구에서는 생활 폐기물 매립지 현장에 파일럿 규모의 바이오커버(pilot-scale biocover, PBC) 2기를 설치하고, 240일 동안 메탄 제거 효율을 모니터링하였다. 또한, 바이오커버 충전 소재를 채취하여 혈청병에서 잠재 메탄 산화능을 평가하였다. 바이오커버로 유입되는 메탄 농도는 23.7-47.9%(평균 값 = 41.3%, 중간값 = 42.6%) 수준이었다. 토양, 지렁이 분변토 및 퇴비 혼합물(7:2:1, v/v)을 충전 소재로 구축한 PBC1의 메탄 제거 효율은 60.7-85.5%이었다. 토양, 지렁이 분변토, perlite 및 퇴비 혼합물(4:2:3:1, v/v)을 충전 소재로 구축한 PBC2의 표메탄 제거 효율은 29.2-78.5%이었다. 그러나, 바이오커버의 충전 소재 자체의 메탄 잠재 산화 능력이 우수함에도 불구하고(평균메탄산화속도 = $180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), 충전 소재의 다짐현상과 채널링이 발생하면 PBC1과 PBC2의 메탄 제거 효율은 0-30%로 저하되었다. 한편, 바이오커버의 메탄 제거 효율은 계절(외부 기온)에 따른 유의적인 차이를 보이지 않았다. 본 연구로부터 도출된 결과는 향후 매립지 현장에 실규모의 메탄 저감용 바이오커버를 설계하고 운전 조건을 구축하는데 유용하게 활용 가능하다.

Keywords

References

  1. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, et al. 2013. Three decades of global methane sources and sinks. Nat. Geosci. 6: 813-823. https://doi.org/10.1038/ngeo1955
  2. Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron- Smith PJ, Aines RD. 2012. Review of methane mitigation technologies with application to rapid release of methane from the arctic. Environ. Sci. Technol. 46: 6455-6469. https://doi.org/10.1021/es204686w
  3. Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Microbiol. Biotechnol. Lett. 37: 293-305.
  4. Ryu H, Cho K. 2012. Characterization of the bacterial community in a biocover for the removal of methane, benzene and toluene. Microbiol. Biotechnol. Lett. 40: 76-81. https://doi.org/10.4014/kjmb.1201.01003
  5. Lewis AW, Yuen ST, Smith AJ. 2003. Detection of gas leakage from landfills using infrared thermography - applicability and limitations. Waste Manag. Res. 21: 436-447. https://doi.org/10.1177/0734242X0302100506
  6. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. 2011. Mitigation of methane emission from fakse landfill using a biowindow system. Waste Manag. 31: 1018-1028. https://doi.org/10.1016/j.wasman.2011.01.024
  7. Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG, et al. 2014. Mitigation of methane emission from an old unlined landfill in klintholm, denmark using a pas-sive biocover system. Waste Manag. 34: 1179-1190. https://doi.org/10.1016/j.wasman.2014.03.015
  8. Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV miljo landfill, denmark: 2. methane oxidation. Waste Manag. 63: 203-212. https://doi.org/10.1016/j.wasman.2017.01.012
  9. Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D. 2010. Effectiveness of a Florida landfill biocover for reduction of CH4 and NMHC emissions. Environ. Sci. Technol. 44: 1197-1203. https://doi.org/10.1021/es901796k
  10. Sadasivam BY, Reddy KR. 2014. Landfill methane oxidation in soil and bio-based cover systems: A review. Rev. Environ. Sci. Bio-Technol 13: 79-107. https://doi.org/10.1007/s11157-013-9325-z
  11. Abushammala MF, Basri NEA, Irwan D, Younes MK. 2014. Methane oxidation in landfill cover soils: A review. Asian. J. Atmos. Environ. 8: 1-14. https://doi.org/10.5572/ajae.2014.8.1.001
  12. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455. https://doi.org/10.1177/0734242X09339325
  13. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
  14. Kim TG, Moon K, Yun J, Cho K. 2013. Comparison of RNA-and DNA-based bacterial communities in a lab-scale methanedegrading biocover. Appl. Microbiol. Biotechnol. 97: 3171-3181. https://doi.org/10.1007/s00253-012-4123-z
  15. Moon KE, Lee EH, Kim TG, Cho KS. 2014. Tobermolite effects on methane removal activity and microbial community of a labscale soil biocover. J. Ind. Microbiol. Biotechnol. 41: 1119-1129. https://doi.org/10.1007/s10295-014-1448-x
  16. Lee E, Moon K, Cho K. 2017. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J. Biotechnol. 242: 1-10. https://doi.org/10.1016/j.jbiotec.2016.12.007
  17. Kim TG, Lee EH, Cho KS. 2012. Microbial community analysis of a methane-oxidizing biofilm using ribosomal tag pyrosequencing. J. Microbiol. Biotechnol. 22: 360-370. https://doi.org/10.4014/jmb.1109.09052
  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: Open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
  19. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  20. Geck C, Scharff H, Pfeiffer E, Gebert J. 2016. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manag. 56: 280-289. https://doi.org/10.1016/j.wasman.2016.06.006
  21. Kwon HM, Yeom SH. 2009. Design of a biofilter packed with crab shell and operation of the biofilter fed with leaf mold solution as a nutrient. Biotechnol. Bioprocess Eng. 14: 248-255. https://doi.org/10.1007/s12257-008-0177-2
  22. Arthur E, Cornelis WM, Vermang J, De Rocker E. 2011. Amending a loamy sand with three compost types: Impact on soil quality. Soil Use Manag. 27: 116-123. https://doi.org/10.1111/j.1475-2743.2010.00319.x
  23. Moon K, Lee S, Lee SH, Ryu HW, Cho K. 2010. Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. J. Hazard. Mater 176: 131-138. https://doi.org/10.1016/j.jhazmat.2009.11.007
  24. Flegel M, Schrader S. 2000. Importance of food quality on selected enzyme activities in earthworm casts (dendrobaena octaedra, lumbricidae). Soil Biol. Biochem. 32: 1191-1196. https://doi.org/10.1016/S0038-0717(00)00035-3
  25. Chaoui HI, Zibilske LM, Ohno T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35: 295-302. https://doi.org/10.1016/S0038-0717(02)00279-1
  26. Kim TG, Moon K, Lee E, Choi S, Cho K. 2011. Assessing effects of earthworm cast on methanotrophic community in a soil biocover by concurrent use of microarray and quantitative realtime PCR. Appl. Soil Ecol. 50: 52-55. https://doi.org/10.1016/j.apsoil.2011.07.011
  27. Lee J, Park R, Kim Y, Shim J, Chae D, Rim Y, et al. 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresour. Technol. 93: 21-28. https://doi.org/10.1016/j.biortech.2003.10.009
  28. Reynolds WD, Drury CF, Tan CS, Yang XM. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci. 95: 251-268. https://doi.org/10.4141/cjss-2014-114
  29. Zebarth BJ, Neilsen GH, Hogue E, Neilsen D. 1999. Influence of organic waste amendments on selected soil physical and chemical properties. Can. J. Soil Sci. 79: 501-504. https://doi.org/10.4141/S98-074
  30. Kibazohi O, Yun S, Anderson WA. 2004. Removal of hexane in biofilters packed with perlite and a Peat-Perlite mixture. World J. Microbiol. Biotechnol. 20: 337-343. https://doi.org/10.1023/B:WIBI.0000033054.15023.71
  31. Jeong S, Yoon H, Kim TG, Cho K. 2013. Effect of tobermolite, perlite and polyurethane packing materials on methanotrophic activity. Korean J. Microbiol. Biotechnol. 41: 215-220. https://doi.org/10.4014/kjmb.1301.01005
  32. Spokas KA, Bogner JE. 2011. Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag. 31: 823-832. https://doi.org/10.1016/j.wasman.2009.12.018
  33. Xie S, O'Dwyer T, Freguia S, Pikaar I, Clarke WP. 2016. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata. Waste Manag. 56: 290-297. https://doi.org/10.1016/j.wasman.2016.08.003
  34. Philopoulos A, Ruck J, McCartney D, Felske C. 2009. A laboratory- scale comparison of compost and sand-compost-perlite as methane-oxidizing biofilter media. Waste Manag. Res. 27: 138-146. https://doi.org/10.1177/0734242X08091555
  35. Streese J, Stegmann R. 2003. Microbial oxidation of methane from old landfills in biofilters. Waste Manag. 23: 573-580. https://doi.org/10.1016/S0956-053X(03)00097-7