• 제목/요약/키워드: $CF_4$ molecular gas

검색결과 12건 처리시간 0.02초

볼츠만 방정식에 의한 CF4 분자가스의 전자이동속도 특성에 관한 연구 (The Study of Character of Electron Drift Velocity in CF4 Molecular Gas by the Boltzmann Equation)

  • 송병두;하성철
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1252-1257
    • /
    • 2004
  • This paper describes the information for quantitative simulation of weakly ionized plasma. In previous paper, we calculated the electron transport coefficients by using two-term approximation of Boltzmann equation. But there is difference between the result of the two-term approximation of the Boltzmann equation and experiments in pure CF$_4$ molecular gas and in CF$_4$+Ar gas mixture. Therefore, In this paper, we calculated the electron drift velocity (W) in pure CF$_4$ molecular gas and CF$_4$+Ar gas mixture (1 %, 5 %, 10 %) for range of E/N values from 0.17~300 Td at the temperature was 300 K and pressure was 1 Torr by multi-term approximation of the Boltzmann equation by Robson and Ness. The results of two-term and multi-term approximation of the Boltzmann equation have been compared with each other for a range of E/N.

Molecular Emission of CF4 Gas in Low-pressure Inductively Coupled Plasma

  • Jung, T.Y.;Kim, D.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.373-375
    • /
    • 2006
  • $CF_4$ gas is one of the most common chemicals used for dry etching in semiconductor manufacturing processes. For application to the etching process and environmental control, the low-pressure inductively coupled plasma (LP-ICP) was employed to obtain the spectrum of $CF_4$ gas. In terms of the analysis of the spectra, trace CF radical by A-X and B-X transitions was detected. The other $CF_x$ radicals, such as $CF_2$ and $CF_3$, were not seen in this experiment whereas strong C and $C_2$ emissions, dissociation products of $CF_4$ gas, were observed.

다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석 (The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation)

  • 전병훈;박재준;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석 (The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation)

  • 전병훈;박재준;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

볼츠만 방정식에 의한 $CF_4$ 분자가스의 전리 및 부착계수에 관한 연구 (The study of ionization and attachment coefficients in $CF_4$ molecular gas by Boltzmann equation)

  • 송병두;하성철;전병훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.628-631
    • /
    • 2004
  • A tetrafluoromethane$(CF_4)$ is most useful gas in plasma dry etching, because it has a electron attachment cross-section. therefor it is important to calculate transport coefficients like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient. and critical E/N. The aim of this study is to get these transport coefficients for information of the insulation strength and efficiency of etching process. Electron transport coefficients in $CF_4+Ar$ gas mixture are simulated in range of E/N values from 1 to 250 [Td] at 300[K} and 1 [Torr] by using Boltzmann equation method. The results of this method can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas. and is presented in this paper for various mixture ratios of $CF_4+Ar$ gas mixture.

  • PDF

전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구 (Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry)

  • 정수정;임주환;한상훈;고형철;하성용
    • 멤브레인
    • /
    • 제26권3호
    • /
    • pp.220-228
    • /
    • 2016
  • 비용매 유도 상분리(NIPS) 법으로 제조된 폴리이미드 전구체를 이용하여 탄소분자체 중공사 분리막을 제조하였으며, 온도변화에 따른 열처리 조건이 탄소분자체 중공사막의 기체 분리 특성에 미치는 영향을 고찰하였다. 열처리 온도 $250{\sim}450^{\circ}C$에서 승온 속도, 안정화 시간을 조정하여 최적화 하였을 때, 중공사 분리막의 단일기체 $N_2$, $SF_6$, $CF_4$ 투과도는 각각 20, 0.32, 0.48 GPU이었고, $N_2/SF_6$ 선택도는 62, $N_2/CF_4$ 선택도는 42로 가장 높은 값을 나타내었다. $SF_6/CF_4/N_2$ 혼합기체 평가에서는 0.5 MPa에서 stage cut이 0.2일 때, $SF_6$, $CF_4$ 회수율이 각각 99, 98% 이상으로 높게 나타났고, 농축농도는 stage cut 0.8에서 주입농도의 4.5배 이상이었다. 이로부터 제조된 탄소분자체 중공사 분리막은 불화가스 회수용 분리막으로써 우수한 소재임을 확인할 수 있었다.

다항근사 및 2항근사 볼츠만 방정식을 이용한 $CF_4+Ar$ 혼합기체의 전자이동속도 연구 (The study of electron drift velocity in $CF_4+Ar$ molecular gas mixture by 2-term and multi-term approximation of the Boltzmann equation)

  • 송병두;하성철;전병훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1179-1182
    • /
    • 2004
  • This paper describes the information for quantitative simulation of weakly ionized plasma. In previous paper, we calculated the electron transport coefficients in $CF_4+Ar$ gas mixture by using two-term approximation of Boltzmann equation. but there is difference between the result of the two-term and the multi-term approximation of the Boltzmann equation in $CF_4$ gas. Therefore, in this paper, we calculated the electron drift velocity (W) in $CF_4+Ar$ gas mixture for range of E/N values from $0.01\sim500[Td}$ at the temperature was 300[K] and pressure was 1[Torr] by multi-term approximation of the Boltzmann equation by Robson and Ness. The results of two-term and multi-term approximation of the Boltzmann equation has been compared with each other for a range of E/N.

  • PDF

2항근사 볼츠만 방정식을 이용한 $CF_4$분자가스의 전자수송계수의 해석 (The study of electron transport coefficients in pure $CF_4$ by 2-term approximation of the Boltzmann equation)

  • 전병훈;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.29-32
    • /
    • 2001
  • We measured the electron transport coefficients(the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_L$) in pure $CF_4$ over the E/N range from 0.04 Td to 250 Td by the double shutter drift tube. And these electron transport coefficients in pure $CF_4$ were calculated over the E/N range from 0.01 to 250 Td at 1 Torr by using the two-term approximation of the Boltzmann equation.

  • PDF

볼츠만 방정식에 의한 C3F8분자가스의 전리 및 부착 계수에 관한 연구 (The Character of Electron Ionization and Attachment Coefficients in Perfluoropropane(C3F8) Molecular Gas by the Boltzmann Equation)

  • 송병두;전병훈;하성철
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.375-380
    • /
    • 2005
  • CF₄ molecular gas is used in most of semiconductor manufacture processing and SF/sub 6/ molecular gas is widely used in industrial of insulation field. but both of gases have defect in global warming. C₃F/sub 8/ gas has large attachment cross-section more than these gases, moreover GWP, life-time and price of C₃F/sub 8/ gas is lower than them, therefor it is important to calculate transport coefficients of C₃F/sub 8/ gas like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient and critical E/N. The aim of this study is to get these transport coefficients for imformation of the insulation strength and efficiency of etching process. In this paper, we calculated the electron drift velocity (W) in pure C₃F/sub 8/ molecular gas over the range of E/N=0.1∼250 Td at the temperature was 300 K and gas pressure was 1 Torr by the Boltzmann equation method. The results of this paper can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas.

Theoretical Analysis of Dipole Moment Derivatives in Fluoromethanes. (III) CH$_3$F and CF$_4$

  • Kim, Kwan;Park, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권3호
    • /
    • pp.174-179
    • /
    • 1987
  • The results of an ab initio (6-31G) molecular orbital calculations of the dipole moment derivatives and gas phase IR intensities in $CH_3F$ and $CF_4$ are reported. The results are compared with corresponding values obtained from a CNDO calculation. We have also analyzed the theoretical polar tensors into the charge, charge flux, and overlap contributions. The effective term charges of hydrogen atom appeared to be transferable among the fluoromethane molecules.