• Title/Summary/Keyword: $C^1$-stable shadowing

Search Result 7, Processing Time 0.022 seconds

TAME DIFFEOMORPHISMS WITH C1-STABLE PROPERTIES

  • Lee, Manseob
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.519-525
    • /
    • 2008
  • Let f be a diffeomorphisms of a compact $C^{\infty}$ manifold, and let p be a hyperbolic periodic point of f. In this paper, we prove that if generically, f is tame diffeomorphims then the following conditions are equivalent: (i) f is ${\Omega}$-stable, (ii) f has the $C^1$-stable shadowing property (iii) f has the $C^1$-stable inverse shadowing property.

  • PDF

C1-STABLE INVERSE SHADOWING CHAIN COMPONENTS FOR GENERIC DIFFEOMORPHISMS

  • Lee, Man-Seob
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.127-144
    • /
    • 2009
  • Let f be a diffeomorphism of a compact $C^{\infty}$ manifold, and let p be a hyperbolic periodic point of f. In this paper we introduce the notion of $C^1$-stable inverse shadowing for a closed f-invariant set, and prove that (i) the chain recurrent set $\cal{R}(f)$ of f has $C^1$-stable inverse shadowing property if and only if f satisfies both Axiom A and no-cycle condition, (ii) $C^1$-generically, the chain component $C_f(p)$ of f associated to p is hyperbolic if and only if $C_f(p)$ has the $C^1$-stable inverse shadowing property.

STRUCTURAL STABILITY OF VECTOR FIELDS WITH ORBITAL INVERSE SHADOWING

  • Lee, Keon-Hee;Lee, Zoon-Hee;Zhang, Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1505-1521
    • /
    • 2008
  • In this paper, we give a characterization of the structurally stable vector fields via the notion of orbital inverse shadowing. More precisely, it is proved that the $C^1$ interior of the set of $C^1$ vector fields with the orbital inverse shadowing property coincides with the set of structurally stable vector fields. This fact improves the main result obtained by K. Moriyasu et al. in [15].

WEAK INVERSE SHADOWING AND Ω-STABILITY

  • Zhang, Yong;Choi, Taeyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • We give characterization of ${\Omega}$-stable diffeomorphisms via the notions of weak inverse shadowing. More precisely, it is proved that the $C^1$ interior of the set of diffeomorphisms with the weak inverse shadowing property with respect to the class $\mathcal{T}_h$ coincides with the set of ${\Omega}$-stable diffeomorphisms.

  • PDF

On the Topological Stability in Dynamical Systems

  • Koo, Ki-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.199-209
    • /
    • 1994
  • In this paper, we show that a persistent dynamical system is structurally stable with respect to $E_{\alpha}$(X) for every ${\alpha}$ > 0 if it is expansive. Also, we prove that a homeomorphism$ f:{\Omega}(f){\rightarrow}{\Omega}(f)$ has the semi-shadowing property then so does $f:\overline{C(f)}{\rightarrow}\overline{C(f)}$.

  • PDF

TOPOLOGICALLY STABLE MEASURES IN NON-AUTONOMOUS SYSTEMS

  • Das, Pramod;Das, Tarun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.287-300
    • /
    • 2020
  • We introduce and study notions of expansivity, topological stability and persistence for Borel measures with respect to time varying bi-measurable maps on metric spaces. We prove that on Mandelkern locally compact metric spaces expansive persistent measures are topologically stable in the class of all time varying homeomorphisms.