• 제목/요약/키워드: $B_4C$ coating

검색결과 117건 처리시간 0.028초

스포츠웨어용 투습방수직물의 열·수분이동 특성에 관한 연구 (A Study on the Heat and Moisture Transport Properties of Vapor-Permeable Waterproof Finished Fabrics for Sports Wear)

  • 손부현;김진아;권오경
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.220-226
    • /
    • 2000
  • This study was to determine the characteristics of vapor-permeable waterproof finished fabric by the coating method. 4 different kinds of coating fabrics (A : wet, porous, polyurethane, B : dry, no porous, polyurethane, C : shape memory polyurethane and D : dry, porous polyurethane) were used, which were developed recently With this sample, moisture transport rate ($40^{\circ}C$, 45%RH & $40^{\circ}C$, 95%RH), changes of coating side's shape by washing times, water repellency rate, contracted length, qmax, heat conductivity, heat keeping rate, heat keeping rate with cotton, heat keeping rate on humidity temperature and humidity within clothing etc. were checked. And it was done in a climate chamber under $20{\pm}2^{\circ}C$, $65{\pm}5%RH$. The results of this study were as follow; In the moisture vapor transmission of sample B and C increased on high temperature and high humidity while sample A and D decreased, on this condition. Qmax rate had high relation with ground fabric's surface properties and the order was A>C>D>B. Heat conductivity had high relation with thickness and surface properties. Heat keeping rates on sweat condition showed around half percents of heat keeping rates on normal condition, but had no relation with moisture vapor transport rate. Changes of the fabric's properties by washing times were different in accordance with the construction of fabrics and the coating resin. Sample C had tow heat keeping rate on the high temperature and humidity and high heat keeping rate on the low temperature and humidity Moisture transport rate of vapor-permeable waterproof finished fabrics had high relation with the properties of ground fabrics on low humidity condition, but on the high humidity condition, it was highly related with the properties of coating resin.

  • PDF

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • 제6권2호
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.

플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구 (A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process)

  • 박진효;이구현;예경환;김승태;전채홍;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향 (Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium)

  • 최예지;정찬영
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향 (Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process)

  • 위동열;함기수;박순홍;이기안
    • 한국분말재료학회지
    • /
    • 제26권5호
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향 (Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes)

  • 김민기;임부택;김기태;장현영;박흥배;김영식
    • Corrosion Science and Technology
    • /
    • 제19권4호
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.

Biological Effects of Different Thin Layer Hydroxyapatite Coatings on Anodized Titanium

  • Sohn, Sung-Hwa;Jun, Hye-Kyoung;Kim, Chang-Su;Kim, Ki-Nam;Ryu, Yeon-Mi;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Kim, Hye-Won;Shin, Sang-Wan;Ryu, Jae-Jun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.237-247
    • /
    • 2005
  • Several features of the implant surface, such as roughness, topography, and composition play a relevant role in implant integration with bone. This study was conducted in order to determine the effects of various thin layer hydroxyapatite (HA) coatings on anodized Ti surfaces on the biological responses of a human osteoblast-like cell line (MG63). MG63 cells were cultured on A (100 nm HA coating on anodized surface), B (500-700 nm HA coating on anodized surface), C ($1{\mu}m$ HA coating on anodized surface), and control (non HA coating on anodized surface) Ti. The morphology of these cells was assessed by SEM. The cDNAs prepared from the total RNAs of the MG63 were hybridized into a human cDNA microarray (1,152 elements). The appearances of the surfaces observed by SEM were different on each of the four dental substrate types. MG63 cells cultured on A, C and control exhibited cell-matrix interactions. It was B surface showing cell-cell interaction. In the expression of several genes were up-, and down-regulated on the different surfaces. The attachment and expression of key osteogenic regulatory genes were enhanced by the surface morphology of the dental materials used.

타이타늄 합금에 다양한 두께로 코팅된 TiN 피막의 기계적 성질 (MECHANICAL PROPERTIES OF TIN COATED FILM WITH VARIOUS COATING THICKNESS ON TITANIUM ALLOY)

  • 이재윤;오동준;김희중;정재헌
    • 대한치과보철학회지
    • /
    • 제45권5호
    • /
    • pp.675-686
    • /
    • 2007
  • Statement of problem: Titanium nitride(TiN) coatings are the most general and popular coating method and used to improve the properties of metallic surface for industrial purposes. When TiN coating applied to the abutment screw, frictional resistance would be reduced, as a results, the greater preload and prevention of the screw loosening could be expected. Purpose: The purpose of this study was to investigate mechanical properties of TiN coated film of various coating thickness on the titanium alloy surface and to evaluate proper coating thickness. Material and method: 95 Titanium alloy (Ti-6Al-4V) discs of 15 mm in diameter and 3 mm in thickness were prepared for TiN coating and divided into 7 groups in this study. Acceding to coating deposition time (CDT) with TiN by using Arc ion plating, were divided into 7 groups : Group A (CDT 30min), Group B (CDT 60min), Group C (CDT 90min), Group D (CDT 120min), Group E (CDT 150min), Group F(CDT 180min) and Group G (no CDT) as a control group. TiN coating surface was observed with Atomic Force Microscope(AFM), field emission scanning electron microscopy(FE-SEM) and examined with scratch tester, wear tester. Result: 1. Coating thickness fir each coated group was increased in proportion to coating deposition time. 2. Surface of all coated groups except Group A was homogeneous and smooth. However, surface of none coated Group G had scratch. 3. Adhesion strength for each coated group was increased in proportion to coating deposition time. 4. Wear resistance for each coated group was increased in proportion to coating deposition time. 5. Surface roughness in Group A, B, C was increased in proportion to coating deposition time. But, surface roughness in Group D, E, F was showed decreased tendency in proportion to coating deposition time. Conclusion: According to coating deposition time, mechanical properties of TiN coated film were changed. It was considered that 120 minutes coating deposition time ($1.32{\mu}m$ in coating thickness) is necessary.

Effects of Coating Materials on Fluidity and Temperature Loss of Molten Metals from Runner Systems in Full Moulds.

  • Cho, Nam-Don;Kim, Yong-Hyun;Choi, Jung-Kwon
    • 한국주조공학회지
    • /
    • 제10권1호
    • /
    • pp.31-42
    • /
    • 1990
  • The full mould casting process in one of the newly developed techniques which has many advantages. Unbonded sand mould has been prepared for the major mould and $CO^2$ gas mould has been used occasionally for comparison. Patterns were built up with expanded polystyrene and coated with three different materials. Silica, graphite and zircon were used for the coating layer. The effects on fluidity and temperature loss of molten metals were investigated. The molten metals were Al-5% Si alloy, Cu-30% Zn alloy and gray iron of approximately 4.0% of carbon equivalent. Experimental variables were runner section area, superheat, sprue height, coating materials, coating thickness and apparent density of EPS pattern. The effects of coating materials on fluidity and temperature loss of the molten metals during transient pouring are summarized as follows : As runner section area, superheat and sprue height increased, fluidity increased. Temperature loss decreased as runner section area and sprue height increased. However, reversed effects were observed in the case of superheat increment. The coating materials decreased the fluidity of each alloy in the order of silica, graphite and zircon. Zircon brought to the highest temperature loss among the coating materials used. The fluidity increased in the order gray iron, Cu-30% Zn and Al-5% Si alloy while temperature loss in the reverse order. Especially in case of reduced pressure process, the fluidity was increased apparently. Al-5% Si alloy showed the lowest temperature loss among the alloys. The increment of the apparent density of EPS pattern resulted in the fluidity decrease and temperature loss increase. The relation between fluidity and temperature loss of each alloy can be expressed by the following equation within the coating thickness limit of 0.5-1.5㎜. F^*={\frac{a}{T^*-b}}-c$ where, $F^*$ : fluidity in the Full mould, $T^*$ : temperature loss in the mould. a : parameter for full mould. b, c : constants.

  • PDF

양백에 코팅된 비정질 TiO2 박막의 특성에 관한 연구 (Gold Colored Coating of TiO2 thin film on Nickel-Silver by Sol-Gel Process)

  • 임용무;김상문;심문식;장희진;신종윤;황규석
    • 한국안광학회지
    • /
    • 제4권1호
    • /
    • pp.51-56
    • /
    • 1999
  • 금속 안경테의 제조에 가장 많이 사용되는 범용 양백의 표면에 2%Ti-naphthanate toluene solution을 $TiO_2$의 전구체로 하여 sol-gel spin coating을 행하고 $500^{\circ}C$에서 열처리 한 코팅 층의 형성조건 및 표면 구조 그리고 표면색상을 Optical photometer외 색차계 그리고 X-선 회절분석기로 분석한 결과 다음과 같은 결론을 얻었다. $TiO_2$ 박막의 열처리 온도는 $500^{\circ}C$가 적정하였으며 1회 코팅 시의 평균 두께는 $0.24{\mu}m$이었으며 코팅 횟수 증가에 따라 직선적으로 증가하였다. $TiO_2$ 코팅 층의 결정구조는 비정질 상태로 존재하였고 색상은 코팅 횟수에 따라 변화하였으며 2회 코팅한 경우는 적색이 미세하게 출현하였으며 3회 코팅한 경우에는 검붉은 색이 발현되었다. 명도는 55.92(1회)에서 코팅 횟수가 증가함에 따라 점차 저하하였으며 a는 3회 코팅까지는 red계열로 증가하다가 급격히 저하하며, b는 꾸준히 감소하여 blue계열로 변화하는 경향을 보였다. 금 색상의 발현을 위해서는 1회 코팅인 $0.24{\mu}m$ 두께의 $TiO_2$ 비정질 막이 적합하였다.

  • PDF