DOI QR코드

DOI QR Code

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes

매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향

  • Kim, M.G. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Lim, B.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, H.Y. (Power Engineering Research Institute, KEPCO E&C) ;
  • Park, H.B. (Power Engineering Research Institute, KEPCO E&C) ;
  • Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
  • 김민기 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 임부택 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김기태 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 장현영 (한국전력기술주식회사) ;
  • 박흥배 (한국전력기술주식회사) ;
  • 김영식 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2020.08.16
  • Accepted : 2020.08.24
  • Published : 2020.08.31

Abstract

The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.

Keywords

References

  1. J. G. Kim and Y. W. Kim, Corros. Sci., 43, 2011 (2001). https://doi.org/10.1016/S0010-938X(01)00015-4
  2. I. Gurrappa, J. Mater. Process. Tech., 166, 256 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.074
  3. E. S. Ibrahim, Elect. Pow. Syst. Res., 52, 9 (1999). https://doi.org/10.1016/S0378-7796(98)00133-3
  4. K. T. Kim, H. W. Kim, Y. S. Kim, H. Y. Chang, B. T. Lim, and H. B. Park, Corros. Sci. Tech., 14, 12 (2015). https://doi.org/10.14773/cst.2015.14.1.12
  5. S. Srikanth and T. S. N. Sankaranarayanan, K. Gopalakrishna, B. R. V. Narasimhan, T. V. K. Das, and S. K. Das, Eng. Fail. Anal., 12, 634 (2005). https://doi.org/10.1016/j.engfailanal.2004.02.006
  6. A. Osella, A. Favetto, and E. Lopez, Appl. Geophys., 38, 219 (1998). https://doi.org/10.1016/S0926-9851(97)00019-0
  7. A. Osella and A. Favetto, Appl. Geophys., 44, 303 (2000). https://doi.org/10.1016/S0926-9851(00)00008-2
  8. I. A. Metwally, H. M. Al-Mandhari, A. Gastli, and Z. Nadir, Eng. Anal. Bound. Elem., 31, 485 (2007). https://doi.org/10.1016/j.enganabound.2006.11.003
  9. L. C. Wrobel and P. Miltiadou, Eng. Anal. Bound. Elem., 28, 267 (2004). https://doi.org/10.1016/S0955-7997(03)00057-2
  10. R. A. Gummow and P. Eng, J. Atmos. Sol.-Terr. Phys., 64, 1755 (2002). https://doi.org/10.1016/S1364-6826(02)00125-6
  11. M. E. Orazem, Underground Pipeline Corrosion, 1st ed., p. 227, Woodhead Publishing, Cambridge (2014). https://doi.org/10.1533/9780857099266.2.227
  12. Y. B. Cho, Y. T. Kho, S. Y. Li, K. S. Jeon, and K. W. Park, J. Corros. Sci. Soc. of Kor., 26, 400 (1997). http://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00260500400
  13. D. H. Boteler, L. Trichtchenko, C. Blais, and R. Pirjola, Proc. Corrosion 2013 Conf., p. 2522, ID NACE-2013-2522, NACE International, Orlando, Florida, USA (2013).
  14. Z. Masilela and J. Pereira, Eng. Fail. Anal., 5, 99 (1998). https://doi.org/10.1016/S1350-6307(98)00006-5
  15. M. Norm, Mater. Performance, 52, 96 (2013).
  16. Y. D. Ryou, J. H. Lee, Y. K. Yoon, and H. S. Lim, J. Korean Inst. Gas, 18, 12 (2014). https://doi.org/10.7842/kigas.2014.18.5.12
  17. A. Smart, G. Lupia, A. Iuga, and J. Cavallo, APEC Validation for Reasonable Assurance of Buried Piping Integrity, EPRI (2014).
  18. B. T. Lim, M. G. Kim, K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 18, 277 (2019). https://doi.org/10.14773/cst.2019.18.6.277
  19. J. H. Park, H. M. Kim, and G. S. Park, J. Korean Magn. Soc., 26, 24 (2016). https://doi.org/10.4283/JKMS.2016.26.1.024
  20. S. L. Shin, G. H. Lee, U. Ahmed, Y. K. Lee, and C. H. Han, J. Hazard. Mater., 342, 279 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.029
  21. Y. D. Ryou, J. J. Kim, and D. K. Kim, J. Korean Inst. Gas, 19, 38 (2015). https://doi.org/10.7842/kigas.2015.19.3.38
  22. J. J. Kim, M. S. Seo, and D. K. Kim, J. Korean Inst. Gas, 18, 66 (2014). https://doi.org/10.7842/kigas.2014.18.5.66
  23. S. Xie, Z. Duan, J. Li, Z. Tong, M. Tian, and Z. Chen, Sensor. Actuat., A-phys., 309, 112030 (2020). https://doi.org/10.1016/j.sna.2020.112030
  24. Y. D. Ryou, J. H. Lee, Y. D. Jo, and J. J. Kim, J. Korean Ins. Gas, 20, 50 (2016). https://doi.org/10.7842/kigas.2016.20.4.50
  25. K. J. Satsios, D. P. Labridis, and P. S. Dokopoulos, Eur. T. Electr. Power, 8, 193 (1998). https://doi.org/10.1002/etep.4450080307
  26. Y. B. Cho, K. W. Park, K. S. Jeon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Proc. Int. Pipeline Conf., paper no. IPC 1996-1851, p. 463, Calgary, Alberta, Canada (1996). https://doi.org/10.1115/IPC1996-1851
  27. M. Magura and J. Brodniansky, Procedia Engineer., 40, 50 (2012). https://doi.org/10.1016/j.proeng.2012.07.054
  28. Y. B. Cho, K. W. Park, K. S. Cheon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, J. Corros. Sci. Soc. Kor., 24, 167 (1995). http://www.corrosionkorea.org/publication/publication04_1_vol_result.php?page=2&cs_code=10001&cs_year=1995&cs_issue=1&cs_volume=24&cs_row=10
  29. K. S. Kim, B. T. Lim, H. Y. Chang, and H. B. Park, Journal of Power Engineering, 30, 3, 116 (2019).
  30. H. Y. Chang, K. T. Kim, B. T. Lim, K. S. Kim, J. W. Kim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 16, 115 (2017). https://doi.org/10.14773/cst.2017.16.3.115
  31. H. Y. Chang, H. B. Park, K. T. Kim, Y. S. Kim, Y. Y. Jang, Trans. Korean Soc. Press. Vessel. Pip., 11, 61 (2015). https://doi.org/10.20466/KPVP.2015.11.2.061
  32. Y. Chao, L. Jianliang, L. Zili, Z. Shouxin, D. Long, and Z. Chengbin, Corros. Rev., 37, 273 (2019). https://doi.org/10.1515/corrrev-2018-0089
  33. Z. G. Chen, C. K. Qin, J. X. Tand, and Y. Zhou, J. Nat. Gas Sci. Eng., 15, 76 (2013). https://doi.org/10.1016/j.jngse.2013.09.003
  34. ASME, ASME boiler & pressure vessel section II-Part A, Ferrous Materials Specifications (Beginning to SA-450) (2011).