• Title/Summary/Keyword: Rectifier

Search Result 1,311, Processing Time 0.034 seconds

Analysis of Input Characteristic in the Rectifier for Output Filter with Unbalanced Supply Voltages (불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석)

  • Kang, Su-Heon;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.195-202
    • /
    • 2005
  • The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's output filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting reasonable rectifier's output filter inductance for given harmonics or power factor criterion.

  • PDF

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

A Study on Technical Trends in Telecom Rectifier Plant (통신용 정류시설의 기술적 동향에 관한 연구)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.278-283
    • /
    • 1997
  • The rectifier is the main element in the telecom DC power system. This paper investigates the advantages and disadvantages of three rectifier techniques ; thyristor, ferro - resonant, and switched - mode. Compared with other techniques, the switched - mode rectifier tech¬nique offers several advantages such as higher efficiency, smaller size and weight, and lower audible noise. Technical requirements in telecom rectifier plant are also described. Finally, the future trends in telecom powering are discussed in connection with the advance oftelecom net¬works.

  • PDF

A Study on the Efficiency Improvement of TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver (동기정류기 강제구동 방식을 이용한 TTFC의 효율 향상에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Lee, Eun-Young;Kwon, Soon-Do;Han, Kyung-Tae;Han, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.166-170
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver. The two transistor forward circuit is used to decrease voltage stress of primary side and the synchronous rectifier is used to reduce current stress of secondary side. Previous synchronous rectifier's MOSFET of TTFC have long dead time This paper presents synchronous rectifier of compulsory control-driver for minimized dead time. This paper compared with diode rectifier, self-driven synchronous rectifier and compulsory control-driver synchronous rectifier of TTFC. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

A Study on High Current Rectifier Systems with Mitigated Time-Varying Magnetic Field Generation

  • Kim, Chang-Woo;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.232-233
    • /
    • 2010
  • This paper investigates occupational exposure to time-varying magnetic field generation in high power rectifier systems. Two different kinds of high power rectifier systems of 25kA are modeled and analyzed. The performance is compared and evaluated on the basis of exposure guidelines from ICNIRP. In order to focus on the qualitative effect of rectifier operation, the mechanical structure of current carrying conductors is simplified as infinite long bus-bar model and low frequency harmonic contents up to 65kHz are considered. Thyristor rectifier generates a significant amount of low frequency magnetic field harmonic contents both at ac and dc side of rectifier infringing the limit from ICNIRP. The multilevel rectifier-IGCT type has almost negligible field generation from ac input side and smaller harmonic contents in dc load side complying with ICNIRP guideline. This remarkable advantage of multilevel rectifier-IGCT type can lead to very simple site layout design for installation and cost-effective compliance to guideline of occupational exposure against magnetic field.

  • PDF

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

Fabrication and Characteristics of 300V Mo-MPS Rectifier (300V용 Mo-MPS 정류기의 제조 및 그 특성)

  • 최형호;박근용;김준식;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.393-399
    • /
    • 2003
  • The current paper presents a new Mo-MPS rectifier using molybdenum as barrier metal to improve on the low forward voltage drop and power dissipation of the coventional Al-MPS and Pt-MPS rectifier. Electrical characteristics of the fabricated Mo-MPS rectifier are imvestigated compared with Al-MPS and Pt-MPS rectifier. At the same current level, the forward voltage drop of the Mo-MPS was reduced by 0.11V~0.24V compared to that of the conventional MPS rectifier. Accordingly, since the Power dissipation of a rectifier mostly depends on the forward current density and forward voltage drop, the Mo-MPS rectifier achieved improved power dissipation when compared to the conventional MPS rectifier. The reverse breakdown voltage of a Mo-MPS rectifier with 68% Schottky junction area was about 304y. Despite having a lower forward voltage drop than a conventional MPS rectifier, the Mo-MPS rectifier still exhibited a higher reverse breakdown voltage.

Study on the Rectifier Circuits for Wireless Energy Transmission (무선 에너지 전송을 위한 정류회로에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • In this paper, the energy transfer is associated with high frequency band and try to analysis the rectifier circuit structure and characteristics and find ways to maximum efficiency. Input signal at 13.56MHz is converted output DC signal with the experiments and measurements. Rectifier cirsuits can be divided into the half-wave, full-wave, bridge rectifier circuit. Research to the present with the passive components are carried out with a focus on efficiency improvements. Factors affecting the efficiency of rectification is dependent on the characteristics of the device. In this experiment, about 70% efficiency can be measured. By using an improved device for high efficiency could be obtained higher efficiency.

Performance Comparison of Full-Wave Rectifiers for Vibration-Energy Harvesting (진동에너지 하베스팅을 위한 전파 정류기 성능 비교)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.278-281
    • /
    • 2014
  • This paper presents the performance comparison of three types of full-wave rectifiers for vibration energy harvesting. The first rectifier is consisted of two active diodes and two MOSFETs, and the comparators of the active diodes are powered from the output of the rectifier. The second one is a 2-stage full-wave rectifier. It comprises the basic rectifier consisted of four MOSFETs and an active diode. The comparator is also powered from the output of the rectifier. The third one is an input powered rectifier. It has the same structure as the second rectifier, but the comparator is powered from the input of the rectifier. These rectifiers have been designed using a 0.35um CMOS process and their performances have been compared through simulations. In terms of efficiency, the first rectifier shows the best performance at heavy loads, but the second one is suitable at light loads. When the power consumption during absence of vibration is more important than efficiency, the input-powered rectifier is proper.

  • PDF

Boosting Inductor Distribution Type PWM Rectifier (승압인덕턴스 분산형 PWM 정류기)

  • Lee, Moo-Young;Kim, Woo-Hyun;Ma, Jin-Suck;Im, Sung-Un;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1940-1943
    • /
    • 1998
  • A new PWM rectifier which offers a unity power factor is proposed. The circuit has same inductance as the conventional boosting type PWM rectifier in powering mode, but the inductance is splitted to 2 part in freewheeling mode. So the period of freewheeling mode is shorter than that of conventional boosting type PWM rectifier, and discontinuous input current is obtained in wide duty range. Therefore the proposed PWM rectifier accomplishs a unity power factor in wide range of duty ratio and boosting factor. And the conventional boosting type PWM rectifier has poor power factor near the unity boosting ratio, the proposed PWM rectifier improves this problem. The mathmatical analysis are presented and experimental results are given.

  • PDF