• Title/Summary/Keyword: $B^*$-algebra

Search Result 324, Processing Time 0.024 seconds

AUTOMATIC CONTINUITY OF ALMOST MULTIPLICATIVE LINEAR FUNCTIONALS ON FRÉCHET ALGEBRAS

  • Honary, Taher Ghasemi;Omidi, Mashaallah;Sanatpour, Amir Hossein
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.641-649
    • /
    • 2016
  • A linear functional T on a $Fr{\acute{e}}echet$ algebra (A, (pn)) is called almost multiplicative with respect to the sequence ($p_n$), if there exists ${\varepsilon}{\geq}0$ such that ${\mid}Tab-TaTb{\mid}{\leq}{\varepsilon}p_n(a)p_n(b)$ for all $n{\in}\mathbb{N}$ and for every $a,b{\in}A$. We show that an almost multiplicative linear functional on a $Fr{\acute{e}}echet$ algebra is either multiplicative or it is continuous, and hence every almost multiplicative linear functional on a functionally continuous $Fr{\acute{e}}echet$ algebra is continuous.

REDUCING SUBSPACES OF A CLASS OF MULTIPLICATION OPERATORS

  • Liu, Bin;Shi, Yanyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1443-1455
    • /
    • 2017
  • Let $M_{z^N}(N{\in}{\mathbb{Z}}^d_+)$ be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n:n{\in}{\mathbb{Z}}^d_+\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that d = 2, we find all the minimal reducing subspaces of $M_{z^N}$ ($N=(N_1,N_2)$, $N_1{\neq}N_2$) on weighted Bergman space $A^2_{\alpha}({\mathbb{B}}_2)$(${\alpha}$ > -1) and Hardy space $H^2({\mathbb{B}}_2)$, and characterize the structure of ${\mathcal{V}}^{\ast}(z^N)$, the commutant algebra of the von Neumann algebra generated by $M_{z^N}$.

A Property of the Weak Subalgebra Lattice for Algebras with Some Non-Equalities

  • Pioro, Konrad
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.195-211
    • /
    • 2010
  • Let A be a locally finite total algebra of finite type such that $k^A(a_1,\cdots,a_n)\;{\neq}\;a_i$ ai for every operation $k^A$, elements $a_1,\cdots,a_n$ an and $1\;\leq\;i\;\leq\;n$. We show that the weak subalgebra lattice of A uniquely determines its (strong) subalgebra lattice. More precisely, for any algebra B of the same finite type, if the weak subalgebra lattices of A and B are isomorphic, then their subalgebra lattices are also isomorphic. Moreover, B is also total and locally finite.

RESTRICTED POLYNOMIAL EXTENSIONS

  • Myung, No-Ho;Oh, Sei-Qwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.865-876
    • /
    • 2021
  • Let 𝔽 be a commutative ring. A restricted skew polynomial extension over 𝔽 is a class of iterated skew polynomial 𝔽-algebras which include well-known quantized algebras such as the quantum algebra Uq(𝔰𝔩2), Weyl algebra, etc. Here we obtain a necessary and sufficient condition in order to be restricted skew polynomial extensions over 𝔽. We also introduce a restricted Poisson polynomial extension which is a class of iterated Poisson polynomial algebras and observe that a restricted Poisson polynomial extension appears as semiclassical limits of restricted skew polynomial extensions. Moreover, we obtain usual as well as unusual quantized algebras of the same Poisson algebra as applications.

C* -ALGEBRA OF LOCAL CONJUGACY EQUIVALENCE RELATION ON STRONGLY IRREDUCIBLE SUBSHIFT OF FINITE TYPE

  • Chengjun Hou;Xiangqi Qiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.217-227
    • /
    • 2024
  • Let G be an infinite countable group and A be a finite set. If Σ ⊆ AG is a strongly irreducible subshift of finite type and 𝓖 is the local conjugacy equivalence relation on Σ. We construct a decreasing sequence 𝓡 of unital C*-subalgebras of C(Σ) and a sequence of faithful conditional expectations E defined on C(Σ), and obtain a Toeplitz algebra 𝓣 (𝓡, 𝓔) and a C*-algebra C*(𝓡, 𝓔) for the pair (𝓡, 𝓔). We show that C*(𝓡, 𝓔) is *-isomorphic to the reduced groupoid C*-algebra C*r(𝓖).

ON f-DERIVATIONS OF BE-ALGEBRAS

  • Kim, Kyung Ho;Davvaz, B.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.127-138
    • /
    • 2015
  • In this paper, we introduce the notion of f-derivation in a BE-algebra, and consider the properties of f-derivations. Also, we characterize the fixed set $Fix_d(X)$ and Kerd by f-derivations. Moreover, we prove that if d is a f-derivation of a BE-algebra, every f-filter F is a a d-invariant.

On weakly associative BCI-algebras

  • Wang, Y.Q.;Wei, S.N.;Jun, Y.B.
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.601-611
    • /
    • 1996
  • In this paper, we introduce the notion of weakly associative BCI-algebras and investigate structure of it. Some of characterizations of elements of the quasi-associative part Q(X) of a BCI-algebra X are shown.

  • PDF

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

LIE ALGEBRA AND OPERATIONAL TECHNIQUES ON THREE-VARIABLE HERMITE POLYNOMIALS

  • Shahwan, M.J.S.;Bin-Saad, Maged G.
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The present paper aims at harnessing the technique of Lie Algebra and operational methods to derive and interpret generating relations for the three-variable Hermite Polynomials $H_n$(x, y, z) introduced recently in [2]. Certain generating relations for the polynomials related to $H_n$(x, y, z) are also obtained as special cases.