• 제목/요약/키워드: $Al_2O_3$ passivation layer

검색결과 72건 처리시간 0.027초

NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과 (Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts)

  • 이유진;구본율;백성호;박만호;안효진
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • 권태석;문연건;김웅선;문대용;김경택;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

PECVD 공정을 이용한 후면 패시베이션 및 결정질 실리콘 태양전지 적용에 관한 연구 (A Study on the Application of Thin Film Passivation and Crystalline Silicon Solar Cells Using PECVD Process)

  • 김관도
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.68-71
    • /
    • 2020
  • In this study, SiNx and Al2O3 thin film was manufactured using PECVD deposition process and applied to crystalline silicon solar cells, resulting in 16.7% conversion efficiency. The structural improvement experiment of the rear electrode resulted in a 1.7% improvement in conversion efficiency compared to the reference cell by reducing the recombination rate of minority carriers and increasing the carrier lifetime by forming a passivation layer consisting of SiNx and Al2O3 thin films through the PECVD process.

결정질 실리콘 태양전지 적용을 위해 PA-ALD를 이용한 $Al_2O_3$ 최적화 연구

  • 송세영;강민구;송희은;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.246-246
    • /
    • 2013
  • Atomic layer deposition (ALD)에 의해 증착된 알루미늄 산화막($Al_2O_3$)은 고효율 결정질 실리콘 태양전지를 위한 우수한 패시베이션 효과를 보인다. $Al_2O_3$은 고정 음전하를 가지고 있기때문에 p-형 태양전지 후면에서 field effect passivation에 의한 효과적인 표면 패시베이션을 형성한다. 하지만 ALD에 의한 $Al_2O_3$ 증착은 긴 공정시간이 필요하다. 이는 기존의 태양전지 산업에 적합하지 않다. 본 논문에서는 공정 시간의 단축을 위해 plasma-assisted atomic layer deposition (PA-ALD) 기술을 사용함으로서 $Al_2O_3$을 증착했다. PA-ALD 기술은 trimethyaluminum (TMA)와 plasma 분위기에서의 $O_2$ 가스를 사용하여 표면 반응을 한다. $Al_2O_3$ 층의 특성을 최적화하기 위해 증착 온도를 $150{\sim}250^{\circ}C$의 범위에서 가변하고, 열처리 온도와 시간을 변화하였다. 결과적으로, 실리콘 웨이퍼를 이용하여 $1250^{\circ}C$의 공정온도에서 증착한 $Al_2O_3$$400^{\circ}C$에서 10분 동안의 열처리 온도와 시간에서 1,610 ${\mu}s$의 최고의 유효 반송자 수명을 보였다.

  • PDF

OLED 내구성에 미치는 무기/에폭시층 보호막의 영향 (The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device)

  • 임정아;주성후;양재웅
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

OLED소자의 수명에 미치는 다층 보호막의 영향 (The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device)

  • 주성후;양재웅
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.

Fabrication of sub-micron sized organic field effect transistors

  • 박성찬;허정환;김규태;하정숙
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.84-84
    • /
    • 2010
  • In this study, we report on the novel lithographic patterning method to fabricate organic-semiconductor devices based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries (MIMIC) and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce the atomic layer deposition of $Al_2O_3$ film on pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated sub-micron sized pentacene FETs and measured their electrical characteristics.

  • PDF

Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상 (Improved Contact property in low temperature process via Ultrathin Al2O3 layer)

  • 정성현;신대영;조형균
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF