• Title/Summary/Keyword: $Al_2O_3$ particles

Search Result 504, Processing Time 0.466 seconds

Influence of SiC Content and Heat Treatments on Strength of Al2O3 Ceramics ($Al_2O_3$ 세라믹스의 강도에 미치는 소결 첨가제 SiC의 함량과 열처리의 영향)

  • Kim, G.U.;Moon, C.K.;Yoon, H.K.;Kim, B.A.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.67-72
    • /
    • 2011
  • In the present study, crack healing effect and residual stress of $Al_2O_3$ ceramics were investigated by changing the sintering temperature and heat treatment conditions. And also it was investigated that the influence of different filler loadings of nano-sized SiC particles on the crack healing behavior of $Al_2O_3$ ceramics. The test samples were characterized by three point bend flexural tests to evaluate their mechanical properties. The morphological changes were studied by FE-SEM and EDS. The test results indicated that the $Al_2O_3$ with nano-sized SiC ceramics sintered at $1800^{\circ}C$ were showed highest density. Sintering temperature at $1800^{\circ}C$, the bending strength of heat treatment in air atmosphere specimens showed about 42 % increment in comparison to the un-heat treated specimens. The cracked specimens can be healed by heat treatment in vacuum atmosphere but the crack healing effect of $Al_2O_3$ ceramics, which is heat treated in air atmosphere was higher than that of heat treated in vacuum atmosphere. $Al_2O_3$ with 30 wt% of SiC ceramics indicated higher crack healing ability than that with 15 wt% of SiC ceramics. The FE-SEM images showed that the median cracks and pores were disappeared after heat treatment in air.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Particle Size Control by the Addition of PVA and HNO3 in γ-Al2O3 Synthesis Using by Sol-Gel Method (졸-겔법을 이용한 γ-Al2O3 합성 시 PVA와 HNO3 첨가에 따른 입자크기 제어)

  • Um, Myeong-Heon;Kim, Na-Eun;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.537-543
    • /
    • 2019
  • Alumina(Al2O3) is a ceramic material used in industry with a range of particle sizes and characteristics. In this study, a boehmite sol was prepared by a hydrolysis and peptizing process using the Sol-Gel method from aluminum isopropoxide (AIP). γ-Al2O3 was prepared by drying and calcining. To prevent particle agglomeration during the manufacturing process, four kinds of polyvinyl alcohol (PVA) with molecular weights of 9,000~10,000, 31,000~50,000, 89,000~98,000, and 130,000 were added and three concentrations of HNO3 (0.1, 0.3, 0.5 molar ratio) were added to determine their effects on the particles. The crystal structure, composition, particle size and shape of the prepared γ-Al2O3 were confirmed through x-ray diffraction (XRD), x-ray fluorescence analyzer (XRF), particle size analyzer (PSA), and field emission scanning electron microscopy (FE-SEM). As a result, γ-Al2O3 with a purity of approximately 98.2% was synthesized, and the particle size decreased and the uniformity increased with increasing ratio of HNO3 addition and PVA molecular weight. From these results, the particle size can be controlled during the manufacturing process of γ-Al2O3 by controlling the addition ratio of PVA and HNO3.

An Experimental Study on Thermal Conductivity Change of Water-Al2O3 Nanofluid with the Elapse of Time, Stirring, and Adding Dispersing Agent (시간경과, 교반 및 분산제 첨가에 따른 물-Al2O3 나노유체 열전도도 변화에 관한 실험적 연구)

  • Park, Dong-Uk;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.537-543
    • /
    • 2013
  • A water-$Al_2O_3$ nanofluid was manufactured, and its thermal conductivity was measured in this study. The measurement was performed at volumetric concentrations of 0.5%, 1%, 2%, and 3%, and the nanoparticle sizes were 20 nm and 70 nm. Experimental test equipment, using the transient hot wire method, was installed to measure the thermal conductivity of the nanofluid, and the measured results were confirmed by measuring pure water with a measurement error of 0.92% at $20^{\circ}C$. The thermal conductivity enhancement ranged from 4.8% to 13.6% for the 20 nm particle size, and from 3.1% to 8.8% for the 70 nm particle size at a concentration range of 0.5% to 3%. The enhancement increased with a decrease in particle size and an increase in concentration. With the elapse of time after manufacturing the nanofluid, the thermal conductivity enhancement decreased significantly from 5 to 9 h, and this trend was measured under all of the measurement conditions. After 24 h, the enhancement ranged from 1.2% to 3.5% for the 20 nm particles, and from 0.6% to 2.3% for the 70 nm particles. The enhancement trends with the elapse of time were almost identical with and without stirring the nanofluid. SDBS (Sodium Dodecyl Benzene Sulfonate) was added as a dispersing agent, and the decrease in the thermal conductivity enhancement was delayed.

Nonmetallic Inclusion in the Large Steel Ingot Casting Process (대형강괴 주조공정 중 비금속개재물 저감연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.52-56
    • /
    • 2008
  • Inclusions in forged large steel ingots of plan carbon steel and tool steel are investigated using optical microscop observation and WDX analysis. The large nonmetallic inclusions which is over $30\sim300{\mu}m$ in their diameter were observed in the samples that has been no good on a nondestructive test. The most of the inclusions were consist of some kind of oxides, ${Al_2}{O_3}$, $SiO_2$, CaO, MgO in forms of particles and glassy with an iron particles. The experimental large steel ingot was cast with a pouring temperature which is about ten centigrade higher than the field standard. The inclusions were observed in the test ingot are the smaller than that was in a usual forged steel ingot and is spherical shape with a glassy agglomerated ${Al_2}{O_3}-SiO_2-CaO-MgO$ particle. The pouring temperature is affected on removing the nonmetallic inclusions during the solidification by a floating mechanism.

  • PDF

The Preparation of Seeded Alumina from Alkoxide (I): Powders (알콕사이드로부터 Seed가 첨가된 알루미나의 제조(I): 분말특성)

  • 김창은;임광일;이해욱
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.367-376
    • /
    • 1992
  • The powder characteristics of seeded alumina prepared from alkoxide by sol-gel method were studied. When ${\alpha}$-Al2O3 seeded powders used, these ${\alpha}$ phase transformation temperatures decreased than those of unseeded powders by 110$^{\circ}C$ and fine powders under 0.1 $\mu\textrm{m}$ could be obtained. When Fe-nitrate added powders used, fast transformation rate resulted from ionic effects of Fe3+, but hard aggregated morphology exhibited. When ${\alpha}$-Al2O3 and Fe nitrate simultaneously added, these powders represented lower transformation temperature but resulted in microstructure with aggregated particles.

  • PDF

The Effect of the Reinforced Particles on the Mechanical and Fracture Behaviors of the SiC/Al2O3/Vinyl-Ester Composites (SiC/Al2O3/Vinyl-Ester 복합재료의 강화재 입자가 기계적 특성 및 파괴거동에 미치는 영향)

  • Kim, Da Jin Sol;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Particle reinforced composites are materials that have enhanced physical properties by adding particle reinforcements to polymer materials and have been applied to a wide range of fields such as the aerospace, bio-technology and automative industry. In this study, particle reinforced composites were prepared by mixing $SiC/Al_2O_3$ to the vinyl ester as the thermoset resin. The purpose of this study is to evaluate mechanical properties and fracture behavior by the tensile test and single edge notch specimen according to the addition ratio of reinforcement. Addition of 1 and 2 wt% of the particle reinforcement to the vinyl-ester resin was effective for the strength improvement. However, when it was more than 3 wt%, its strength was decreased. Also the highest elastic modulus obtained as 3.19 GPa was found at the 2 wt% addition of reinforcement. Futhermore the fracture toughness was evaluated by the energy release rate and the maximum critical energy release rate was obtained when 1 wt% reinforcement. The results show that the limit of adding of $SiC/Al_2O_3$ for improvement of the mechanical and fracture performance is 2 wt% reinforcement particles.

Lubricated Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 윤활마모특성)

  • Fu, Hui-hui;Bae, Sung-in;Ham, Kyung-chun;Song, Jung-il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.135-138
    • /
    • 2002
  • The purpose of this study is to investigate the lubricated wear properties of Saffil/Al, Saffil/$Al_2O_3/Al$ and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction & wear tester with long sliding distance. The wear properties of the three composites were evaluated in many respects. The effects of Saffil, $Al_2O_3$ particles and SiC particles on the wear behavior of the composites under lubricated conditions were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Comparing with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under intermediate load, Saffil/Al showed best wear resistance among them, and its COF value is the smallest. The dominant wear mechanism of the composites was microploughing, but microcracking also occurred for them to different extent.

  • PDF

Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis) (세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석))

  • Jung S. C.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • In order to simulate the powder compaction process and to assess the effects of packing randomness and particle arrangement 2-dimensional model of rod array compaction using quasi-random multiparticle array is introduced. The elastic modulus of porous ceramics is computed by the homogenization method. With 3 Al₂O₃ and 3 Al particles the compaction processes associated with the porosities are simulated by the explicit finite element method, based on the elastic modulus found by the homogenization method. The simulation results are compared with both previous analytical ones and experimental measurements. Finally, in order to find the relationship between the friction coefficient of powder particles and the relative density, the sensitivity analysis is performed.

Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation (Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향)

  • Nam, Kyung-Su;Moon, Jung-In;Kongsy, Phimmavong;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.