DOI QR코드

DOI QR Code

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2016.10.18
  • Accepted : 2017.02.14
  • Published : 2017.06.30

Abstract

$Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Keywords

References

  1. S. Choi, J.B. Yoon, S. Muhammad and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(1), 34-40. https://doi.org/10.5229/JECST.2013.4.1.34
  2. D. Jang, K. Palanisamy, Y. Kim and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(3), 102-107. https://doi.org/10.5229/JECST.2013.4.3.102
  3. C.K. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2016, 8(13), 8561-8567. https://doi.org/10.1021/acsami.6b01775
  4. J.M. Kim, M. Jeong, B.S. Jin and H.S. Kim, J. Electrochem. Sci. Technol., 2014, 5(1), 32-36. https://doi.org/10.5229/JECST.2014.5.1.32
  5. S.W. Kim and K.Y. Cho, J. Electrochem. Sci. Technol., 2015, 6(1), 10-15.
  6. C.K. Lee and Y.J. Park, Chem. Commun., 2015, 51(7), 1210-1213. https://doi.org/10.1039/C4CC08542F
  7. D.H. Yoon, S.H. Yoon, K.S. Ryu and Y.J. Park, Scientific Reports, 2016, 6, 19962. https://doi.org/10.1038/srep19962
  8. D. Jang, K. Palanisamy, J. Yoon, Y. Kim and W.S. Yoon, J. Power Sources, 2013, 244, 581-585. https://doi.org/10.1016/j.jpowsour.2013.01.108
  9. J. Wang, W. Liu, S. Liu, J. Chen, H. Wang and S. Zhao, Electrochim. Acta, 2016, 188, 645-652. https://doi.org/10.1016/j.electacta.2015.12.053
  10. M.H. Pyun and Y.J. Park, Nanoscale Research Letters, 2016, 11(1), 272. https://doi.org/10.1186/s11671-016-1483-9
  11. X. Rui, O. Yan, M. Skyllas-Kzacos and T.M. Lim, J. Power Sources, 2014, 258, 19-38. https://doi.org/10.1016/j.jpowsour.2014.01.126
  12. M.H. Pyun and Y.J. Park, J. Alloys Comp., 2015, 643, S90-S94. https://doi.org/10.1016/j.jallcom.2014.11.237
  13. S. Watanabe, M. Kinoshita, T. Hosokawa and K. Morigaki, J. Power Sources, 2014, 258, 210-217. https://doi.org/10.1016/j.jpowsour.2014.02.018
  14. M.H. Pyun and Y.J. Park, J. Electroceram., 2014, 33(3-4), 264-271. https://doi.org/10.1007/s10832-014-9968-3
  15. Q. Li, G. Li, C. Fu, D. Luo, J. Fan and L. Li, Appl. Mater. Interfaces, 2014, 6(13), 10330-10341. https://doi.org/10.1021/am5017649
  16. L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang and F. Wu, Adv. Mater., 2014, 26(39), 6756-6760. https://doi.org/10.1002/adma.201402541
  17. C.S. Kim and Y.J. Park, Solid State Ionics, 2014, 268, 210-215. https://doi.org/10.1016/j.ssi.2014.06.014
  18. T. Wei, R. Zeng, Y. Sun, Y. Huang and K. Huang, Chem. Commun., 2014, 50(16), 1962-1964. https://doi.org/10.1039/c3cc48559e
  19. S.B. Lim and Y.J. Park, Nanoscale Research Letters, 2015, 10(1), 270. https://doi.org/10.1186/s11671-015-0986-0
  20. C.S. Kim, J.H. Cho and Y.J. Park, Mater. Res. Bull., 2014, 58, 49-53. https://doi.org/10.1016/j.materresbull.2014.03.031
  21. X. Xiang and W. Li, Electrochim. Acta, 2014, 127, 259-264. https://doi.org/10.1016/j.electacta.2014.02.037
  22. Y. Dai, L. Cai and R.E. White, J. Power Sources, 2014, 247, 365-376. https://doi.org/10.1016/j.jpowsour.2013.08.113
  23. Y. Chen, Y. Zhang, B. Chen, Z. Wang and C. Lu, J. Power Sources, 2014, 256, 20-27. https://doi.org/10.1016/j.jpowsour.2014.01.061
  24. K. Araki, N. Taguchi, H. Sakaebe, K. Tatsumi and Z. Ogumi, J. Power Sources, 2014, 269, 236-243. https://doi.org/10.1016/j.jpowsour.2014.06.101
  25. B. Huang, X. Li, Z. Wang, H. Guo, Z. He, R. Wang, J. Wang and X. Xiong, Mater. Letters, 2014, 115, 49-52. https://doi.org/10.1016/j.matlet.2013.10.014
  26. Y. Xu, Y. Liu, Z. Lu, H. Wang, D. Sun and G. Yang, Applied Surface Sci., 2016, 361, 150-156. https://doi.org/10.1016/j.apsusc.2015.11.156
  27. H.J. Lee and Y.J. Park, Mater. Res. Bull., 2014, 58, 169-173. https://doi.org/10.1016/j.materresbull.2014.03.028
  28. H. Liu, C. Chen, C. Du, X. He, G. Yin, B. Song, P. Zuo, X. Cheng, Y. Ma and Y. Gao, J. Mater. Chem. A, 2015, 3(6), 2634-2641. https://doi.org/10.1039/C4TA04823G
  29. H.G. Song, J.Y. Kim, K.T. Kim and Y.J. Park, J. Power Sources, 2011, 196(16), 6847-6855. https://doi.org/10.1016/j.jpowsour.2010.09.027
  30. X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai and X. Sun, J. Power Sources, 2014, 247, 57-69. https://doi.org/10.1016/j.jpowsour.2013.08.042
  31. H. J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233. https://doi.org/10.1016/j.jpowsour.2013.01.154
  32. B. Huang, X. Li, Z. Wang, H. Guo, X. Xiong and J. Wang, J. Power Sources, 2014, 583, 313-319.
  33. J. Shin, H. Jung, Y. Kim and J. Kim, J. Alloys Compd., 2014, 589, 322-329. https://doi.org/10.1016/j.jallcom.2013.11.212
  34. H.J. Lee, K.S. Park and Y.J. Park, J. Power Sources, 2010, 195(18), 6122-6129. https://doi.org/10.1016/j.jpowsour.2009.10.080
  35. Y. Chen, K. Xie, C. Zheng, Z. Ma and Z. Chen, Appl. Mater. Interfaces, 2014, 6(19), 16888-16894. https://doi.org/10.1021/am504412n
  36. S.-H. Lee, C.S. Yoon, K. Amine and Y.-K. Sun, J. Power Sources., 2013, 234, 201-207. https://doi.org/10.1016/j.jpowsour.2013.01.045
  37. Y. Cho and J. Cho, J. Electrochem. Soc., 2010, 157(6), A625-A629. https://doi.org/10.1149/1.3363852
  38. D.J. Lee, B. Scrosati and Y.K. Suna, J.Power Sources., 2011, 196(18), 7742-7746. https://doi.org/10.1016/j.jpowsour.2011.04.007
  39. E. Zhao, X. Liu, H. Zhao, X. Xiao and Z. Hu, Chem. Commun., 2015, 51(44), 9093-9096. https://doi.org/10.1039/C5CC00383K
  40. K. Gao, S.X. Zhao, S.T. Guo, C.W. Nan, Electrochim. Acta., 2016, 206, 1-9. https://doi.org/10.1016/j.electacta.2016.04.085
  41. G. Hu, M. Zhang, L.Wu, Z. Peng, K. Du, and Y. Cao, J. Alloys and Compounds., 2017, 690, 589-597. https://doi.org/10.1016/j.jallcom.2016.08.187
  42. G.T.-K. Fey, P. Muralidharan, C.-Z. Lu and Y.-D. Cho, Solid State Ionics, 2005, 176(37), 2759-2767. https://doi.org/10.1016/j.ssi.2005.09.002