DOI QR코드

DOI QR Code

Particle Size Control by the Addition of PVA and HNO3 in γ-Al2O3 Synthesis Using by Sol-Gel Method

졸-겔법을 이용한 γ-Al2O3 합성 시 PVA와 HNO3 첨가에 따른 입자크기 제어

  • Um, Myeong-Heon (Division of Chemical Engineering, Kongju National University) ;
  • Kim, Na-Eun (Department II, Korea Gas Safety Corporation) ;
  • Ha, Beom-Yong (Department of Renewable & Electrical Engineering, Yeungjin University)
  • 엄명헌 (공주대학교 화학공학부) ;
  • 김나은 (한국가스안전공사) ;
  • 하범용 (영진전문대학교 신재생에너지전기계열)
  • Received : 2019.09.09
  • Accepted : 2019.11.01
  • Published : 2019.11.30

Abstract

Alumina(Al2O3) is a ceramic material used in industry with a range of particle sizes and characteristics. In this study, a boehmite sol was prepared by a hydrolysis and peptizing process using the Sol-Gel method from aluminum isopropoxide (AIP). γ-Al2O3 was prepared by drying and calcining. To prevent particle agglomeration during the manufacturing process, four kinds of polyvinyl alcohol (PVA) with molecular weights of 9,000~10,000, 31,000~50,000, 89,000~98,000, and 130,000 were added and three concentrations of HNO3 (0.1, 0.3, 0.5 molar ratio) were added to determine their effects on the particles. The crystal structure, composition, particle size and shape of the prepared γ-Al2O3 were confirmed through x-ray diffraction (XRD), x-ray fluorescence analyzer (XRF), particle size analyzer (PSA), and field emission scanning electron microscopy (FE-SEM). As a result, γ-Al2O3 with a purity of approximately 98.2% was synthesized, and the particle size decreased and the uniformity increased with increasing ratio of HNO3 addition and PVA molecular weight. From these results, the particle size can be controlled during the manufacturing process of γ-Al2O3 by controlling the addition ratio of PVA and HNO3.

세라믹 재료 중 알루미나(Al2O3)는 산업에서 널리 사용되는 세라믹 재료로서 최근의 기술발전에 따라 재료 크기가 작아지고 이에 따른 특성이 다양하여 그 중요성이 더해 가고 있다. 본 연구에서는 다양한 알루미늄 알콕사이드 중 Aluminum isopropoxide(AIP)를 출발 원료물질로 하여 졸-겔(Sol-Gel)법에 의해 가수분해 및 해교과정을 거쳐 boehmite 졸을 제조하고 이후 건조 및 하소시켜 γ-Al2O3를 제조하였다. 이러한 제조 과정 중 입자의 응집현상을 방지하기 위해 9,000 ~ 10,000, 31,000 ~ 50,000, 89,000 ~ 98,000, 130,000의 분자량을 갖는 4종류의 PVA(Polyvinyl alcohol)를 첨가하고 3종류 질산(0.1, 0.3, 0.5 몰비)을 첨가하여 입자에 미치는 영향을 확인하고자 하였다. 제조된 γ-Al2O3는 X선 회절분석기(XRD), X선 형광분석기(XRF), 입도분석기(PSA), 전계방사 주사전자현미경(FE-SEM) 등의 기기분석을 통하여 결정구조 및 조성, 입자크기, 그리고 입자형상을 확인하였다. 그 결과, 약 98.2 %의 순도를 갖는 γ-Al2O3가 합성되었으며 첨가되는 질산의 첨가비가 높을수록, 그리고 PVA 분자량이 클수록 입자크기가 감소하고 균일성이 높아지는 것을 확인할 수 있었다. 이러한 결과로부터, PVA와 질산의 첨가비 조절에 따라 γ-Al2O3의 제조공정 중 입자크기 제어가 가능할 것으로 사료된다.

Keywords

References

  1. Y. E. Qi, Y. S. Zhang, L. T. Hu, "High-tempera -ture self-lubricated properties of Al2O3/Mo laminated composites", Wear , Vol.280-281, pp.1-4, March 2012. DOI: https://doi.org/10.1016/j.wear.2012.01.010
  2. T. D. Isfahani, J. Javadpour, A. Khavandi, R. Dinnebier, M. Goodarzi, H. R. Rezaie, "Mechanochemical synthesis of alumina nanoparticles: Formation mechanism and phase transformation", Powder technology , Vol.229, pp.17-23, October 2012. DOI: https://doi.org/10.1016/j.powtec.2012.05.034
  3. B. Huang, C. H. Bartholomew, S. J. Smith, B. F. Woodfield,. "Facile solvent-deficient synthesis of mesoporous ${\gamma}$-alumina with controlled pore structures", Microporous and Mesoporous Materials, Vol.165, pp.70-78, January 2013. DOI: https://doi.org/10.1016/j.micromeso.2012.07.052
  4. A. R. Ibrahim, L. Zhu, J. Xu, Y. Hong, Y. Su, H. Wang, J. Li, "Synthesis of mesoporous alumina with CO 2 expanded carbonation and its catalytic oxidation of cyclohexanone", The Journal of Supercritical Fluids, Vol.92, pp.190-196, August 2014. DOI: https://doi.org/10.1016/j.supflu.2014.05.021
  5. M. Ranjbar, M. Yousefi, "Sonochemical Synthesis and Characterization of a Nano-Sized Lead (II) Coordination Polymer; A New Precursor for the Preparation of PbO Nanoparticles", International Journal of Nanoscience and Nanotechnology, Vol.12, No.2, pp.109-118, Spring 2016.
  6. M. Almasi Kashi, A. Ramazani, "Ordered Nanoporous Alumina Membranes Formed in Oxalic/Phosphoric Acid Using Hard Anodization", International Journal of Nanoscience and Nanotechnology, Vo.6, No.2, pp.78-87, Spring 2010.
  7. Gitzen, W.H, Alumina as a Ceramic Material, Published in the American Ceramic Society, Inc., Columbus, Ohio, USA, p.7, 1970.
  8. Khamirul Amin Matori, Loy Chee Wah, Mansor Hashim, Ismayadi Ismail and Mohd Hafiz Mohd Zaid, "Phase Transformations of $\alpha$-Alumina Made from Waste Aluminum via a Precipitation Technique", Int. J. Mol. Sci. 2012, Vol.13, No.12, pp.16812-16821, December 2012. DOI: https://doi.org/10.3390/ijms131216812
  9. Neethumol Varghese, Manjusha Hariharan, Dr.A. Benny Cherian, Dr.P.V. Sreenivasan, Jenish Paul, PVA-Assisted Synthesis and Characterization of Nano $\alpha$-Alumina, International Journal of Scientific and Research Publications , Vol.4, No.10, October 2014.
  10. B. An, W. Wang, G. Ji, S. Gan, G. Gao, J. Xu, G. Li, "Preparation of nano-sized $\alpha$-Al2O3 from oil shale ash", Energy, Vol.35, No.1, p.45-49, January 2010. DOI: https://doi.org/10.1016/j.energy.2009.08.027
  11. Y. S. Yoo, K. Y. Park, K. Y. Jung, S. B. Cho, "Preparation of $\alpha$-alumina nanoparticles via vapor-phase hydrolysis of AlCl3", Mater Lett., Vol. 63, No.21, pp.1844-1846, August 2009. DOI: https://doi.org/10.1016/j.matlet.2009.05.050
  12. Yi J, Sun Y, Gao J, Xu C, "Synthesis of crystalline $\alpha$ -Al2O3 with high purity", Transaction of Nonferrous Met. Soc of China, Vol.19, No.5, pp.1237-1242, October 2009. DOI: https://doi.org/10.1016/S1003-6326(08)60435-5
  13. B. W. Lee, H. J. Lim, I. P. Lee, C. Y. Ahn, "Effect of type of peptizing agents used for preparation of alumina sols on the properties of coating films", Korea Chem. Eng. Res, Vol. 54, No. 6, pp.767-774, October 2016. DOI: https://doi.org/10.9713/kcer.2016.54.6.767