• Title/Summary/Keyword: $Al-SiC_p$

Search Result 426, Processing Time 0.026 seconds

Effect of Loading Conditions on the Fractrue Behavior in $\textrm{SiC}_{p}$/Al Alloy Composite ($\textrm{SiC}_{p}$/Al합금 복합재료의 파괴거동에 미치는 부하조건의 영향)

  • An, Haeng-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.974-980
    • /
    • 1997
  • SiC$_{p}$/AI 합금 복합재료에 있어서 동적 및 정적파괴인성시험을 실시하고 파괴거동에 미치는 부하조건의 영향을 검토하였다. 동적파괴인성시험은 CAI시스템을 이용하여 1.5m/sec의 부하속도로 실시하였고, 정적파괴인성시험은 만능시험기를 이용하여 0.3 mm/min의 부하속도로 실시하였다. 또한 파괴과정을 명확히 해석하기 위하여 동적부하조건에 대해서는 stop block법을, 정적부하조건에 대해서는 복수시험편법을 이용하였다. 균열의 발생 및 성장은 부하조건에 의해 크게 영향을 받으며, 변위량에 대한 균열의 발생은 정적부하조건에서 더 빨리 일어나고, 균열의 성장은 동적부하조건에서 더 급격하다. 또한 부하조건은 파괴의 형태에도 크게 영향을 미치며, 동적부하조건하에서는 정적부하조건하에 비하여 균열이 입자부분(입자의 파단 또는 박리)을통과해 가는 경향이 크고 비교적 많은 편향을 반복해서 진행해 가지 때문에 파괴인성치도 크다.다.

  • PDF

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Process Temperature Dependence of Al2O3 Film Deposited by Thermal ALD as a Passivation Layer for c-Si Solar Cells

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • This paper presents a study of the process temperature dependence of $Al_2O_3$ film grown by thermal atomic layer deposition (ALD) as a passivation layer in the crystalline Si (c-Si) solar cells. The deposition rate of $Al_2O_3$ film maintained almost the same until $250^{\circ}C$, but decreased from $300^{\circ}C$. $Al_2O_3$ film deposited at $250^{\circ}C$ was found to have the highest negative fixed oxide charge density ($Q_f$) due to its O-rich condition and low hydroxyl group (-OH) density. After post-metallization annealing (PMA), $Al_2O_3$ film deposited at $250^{\circ}C$ had the lowest slow and fast interface trap density. Actually, $Al_2O_3$ film deposited at $250^{\circ}C$ showed the best passivation effects, that is, the highest excess carrier lifetime (${\tau}_{PCD}$) and lowest surface recombination velocity ($S_{eff}$) than other conditions. Therefore, $Al_2O_3$ film deposited at $250^{\circ}C$ exhibited excellent chemical and field-effect passivation properties for p-type c-Si solar cells.

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

$Al/Al_2O_3/Si$(100) Solar Cell 제작 및 특성 평가

  • Min, Gwan-Hong;Yu, Jeong-Jae;Yeon, Je-Min;;Jeong, Sang-Hyeon;Kim, Gwang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.313.2-313.2
    • /
    • 2013
  • 본 연구에서는 기존에 연구된 Solar Cell 보다 구조 및 제작이 단순한 $Al/Al_2O_3/Si$(100) Solar cell을 제작하여 평가하였다. 기판으로는 p-type Si(100), 0.5~2 ${\Omega}{\cdot}cm$을 사용하여 chemical cleaning 후 ALD(Atom Layer Deposition)법으로 Al2O3 터널링 절연막을 증착하였으며, 박막의 두께를 1~10 nm로 변화시켜 MIS 커패시터의 터널링 효과를 평가하였다. MIS 커패시터의 전기적 특성평가를 위해 누설전류 밀도-전계 특성은 pA meter/DC Voltage source를 사용하였고, 커패시턴스-전압특성, D-factor 특성은 precision LCR meter를 사용하였다. $Al/Al_2O_3/Si$(100) Solar cell의 특성평가를 위해 300~1100nm 파장영역에 따른 양자 효율을 평가하기 위해 Quantum Efficiency system (QE)을 사용하였고, Stanard Test Conditions 100 $mW/cm^2$, AM1.5, $25^{\circ}C$ 조건의 Voc, Isc, Jsc, FF (Fill Factor) 및 Efficiency(%)를 평가하기 위해 Solar simulator를 이용하였다.

  • PDF

Properties of $Al_2O_3$ Insulating Film Using the ALD Method for Nonvolatile Memory Application (비휘발성 메모리 응용을 위한 ALD법을 이용한 $Al_2O_3$ 절연막의 특성)

  • Jung, Soon-Won;Lee, Ki-Sik;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2420-2424
    • /
    • 2009
  • We have successfully demonstrated of metal-insulator-semiconductor (MIS) capacitors with $Al_2O_3/p-Si$ structures. The $Al_2O_3$ film was grown at $200^{\circ}C$ on H-terminated Si wafer by atomic layer deposition (ALD) system. Trimethylaluminum [$Al(CH_3)_3$, TMA] and $H_2O$ were used as the aluminum and oxygen sources. A cycle of the deposition process consisted of 0.1 s of TMA pulse, 10 s of $N_2$ purge, 0.1 s of $H_2O$ pulse, and 60 s of $N_2$ purge. The 5 nm thick $Al_2O_3$ layer prepared on Si substrate by ALD exhibited excellent electrical properties, including low leakage currents, no mobile charges, and a good interface with Si.

Thermoelectric Properties of Al4C3-doped α-SiC (Al4C3 첨가 α-SiC의 열전변환특성)

  • 박영석;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.991-997
    • /
    • 2003
  • The effect of A1$_4$C$_3$ additive on the thermoelectric properties of SiC ceramics were studied. Porous SiC ceramics with 47∼59% relative density were fabricated by sintering the pressed $\alpha$-SiC powder compacts with A1$_4$C$_3$at 2100∼220$0^{\circ}C$ for 3 h in Ar atmosphere. Crystalline phases of the sintered bodies were identified by powder X-Ray Diffraction (XRD) and their microstructures were observed with a Scanning Electron Microscope (SEM). In the case of A1$_4$C$_3$ addition, the phase transformation of 6H-SiC to 4H-SiC could be observed during sintering. The Seebeck coefficient and electrical conductivity were measured at 550∼95$0^{\circ}C$ in Ar atmosphere. In the case of undoped specimens, the Seebeck coefficients were positive (p-type semiconducting) possibly due to a dominant effect of the acceptor impurities (Al, Fe) contained in the starting powder and electrical conductivity increased as increasing sintering temperature. Electrical conductivity of A1$_4$C$_3$doped specimen is larger than that of undoped specimen under the same condition, which might be due to the reverse phase transformation and increasing of carrier density. And the Seebeck coefficient of A1$_4$C$_3$ doped specimen is also larger than that of undoped specimen. The density of specimen, the amount of addition and sintering atmosphere had significant effects on the thermoelectric property.

Synthetic Study of Zeolites from Some Glassy Rocks (II) : Dissolution Behavior of Perlite and Zeolite Synthesis in Alkaline Aqueous Solution (유리질 암석으로부터 제올라이트 합성에 관한 연구(Ⅱ) : 알칼리 용액에서 진주암의 용해 거동과 제올라이트의 합성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.61-71
    • /
    • 1992
  • Through the low-temperature(60-150${\circ}C$) hydrothermal treatment of perlite with the alkaline solution at various NaOH concentrations, the mode of volcanic glass alteration and resultant zeolite formation were investigated in a closed system. At a temperature of 80${\circ}C$ and alkalinities of pH range 8 to 12, corresponding to the natural environments of diagenetic zeolite formation, only weak dissolution of perlitic glass occurs without zeolite formation despite the residence time of 100 days. Activities of Si and Al increase progressively, as a consequence of increasing pH, whereas activity ratios of Si/Al decrease. Zeolites were synthesized from perlite in the alkaline solution at above 0.1M NaOH concentrations. Below the temperature of 100${\circ}C$ Na-P was mainly formed, whereas analcime was the dominant zeolite at the temperature range of 100-150${\circ}C$. During Na-P synthesis chabazite and Na-X were also formed as by-products in case of lower proportion of solution/sample(<10ml/g) and higher NaOH concentraion (>3M), respectively. The alteration modes of perlite in the zeolite synthesis reflect that the formation of synthetic zeolites occurs as an incongruent dissolution likely with the diagenetic formation of natural zeolites from volcanic glass. Considering much difference in reaction kinetics between natural and synthetic systems, however, the evaluated synthetic conditions in these experiments were not directly applicable to the natural diagenetic system.

  • PDF

Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting (용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향)

  • Seo, Y.H;Kang, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.