• Title/Summary/Keyword: $AB_2$ alloy

Search Result 39, Processing Time 0.018 seconds

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Surface Modification of $AB_2$ Type Hydrogen Storage Alloys by Ball Milling for Ni-MH Battery (Ni-MH 전극용 $AB_2$계 수소저장합금의 볼밀링 처리에 의한 표면개질 연구)

  • Moon, Hong-Gi;Park, Choong-Nyeon;Yoo, Joung-Hyun;Park, Chan-Jin;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.418-424
    • /
    • 2006
  • In order to improve the activation properties of the $AB_2$ type hydrogen storage alloys for Ni-MH battery, the alloy surface was modified by employing high energy ball milling. The $Zr_{0.54}Ti_{0.45}V_{0.54}Ni_{0.87}Cr_{0.15}Co_{0.21}Mn_{0.24}$ alloy powder was ball milled for various period by using the high energy ball mill. As the ball milling time increased, activation of the $AB_2$ type composite powder electrodes were enhanced regardless of additives. When the ball milling time was small discharge capacities of the $AB_2$ type composite powder electrodes increased with the milling time. On the other hand for large milling time it decreased with increasing milling time. The maximum discharge capacity was obtained by ball milling for 3-4 min.

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

Effects of Pd Addition on Electrode properties of Metal Hydride (Pd 첨가가 금속수소화물 전극 특성에 미치는 영향)

  • Choi, Jeon;Lee, Kyung-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate etc. In this work, the electrode properties of $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ alloy and $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ alloy with addition of Pd were investigated. These alloys did not show any change in XRD pattern by Pd addition. As Pd was added as alloy element, the activation behavior was not affected significantly in both $AB_2$ type and $AB_5$ type electrodes and, On charging and discharging in high current density, Discharge capacity with increasing of Pd content was more decreased. But cycle life was showed increasing. Especially the electrode of $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}+0.5wt%$ Pd alloy was not almost decreased discharge capacity for 400cycles.

  • PDF

Volume Expansion of TiMn2-type Hydrogen Storage Alloy with Hydrogenation (TiMn2계 수소저장합금의 수소화에 따른 부피팽창)

  • PARK, CHOONG-NYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.459-464
    • /
    • 2017
  • The volume expansions of $Ti_{0.95}Zr_{0.05}V_{0.4}Mn_{1.45}Fe_{0.1}Cr_{0.05}$ alloy during hydrogenation with various conditions have been investigated. The theoretical volume expansion measured with XRD for this alloy with hydrogenation was 21%. The apparent volume expansion of this alloy ingot with hydrogenation was composed of two effects. One is a hydrogenation and the other is a pulverization. The apparent volume of free alloy powder was 1.8 times greater than that of an ingot, implying the pulverization effect on the apparent volume expansion is 80%. The apparent volume expansion of the alloy ingot with hydrogenation under a unconstrained condition was about 80 (${\pm}15$)%, much smaller than that of free alloy powder which expected as 118%. In addition, The apparent volume expansion of the alloy ingot with hydrogenation under a constrained condition(Al container) was about 50%, much smaller than that of the unconsrained. This reduced apparent volume expansion of the alloy ingot could be attributed to an arrangement of alloy powder keeping its original shape of the ingot even after hydrogenation.

EFFECT OF GOLD ELECTRODEPOSIT OF PD-AG, NI-CR ALLOYS ON THE COLOR OF VENERRED RESIN (Pd-Ag 및 Ni-Cr 합금의 금 전착이 전장 레진의 색채에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.645-661
    • /
    • 1995
  • As the mechanical property of composite resin improved, composite resin has been widely used esthetic dentistry. In the field of esthetic dentistry, the color of prosthetic material is very important. The purpose of this study was to evaluate the color difference of specimens, by the types of alloys and gold electrodeposit. Experimental groups were as follows : Group Prec : Au-Pt alloy with no gold coating and no resin veneer. Group Semi : Pd-Ag alloy with no gold coating and no resin veneer. Group BAse : Ni-Cr alloy with no gold coating and no resin veneer. Group Gsem : Pd-Ag alloy with no gold coating and no resin veneer. Group Gbas : Ni-Cr alloy with no gold coating and no resin veneer. Group PreR : Resin veneer on the Pd-Ag alloy without gold coating. Group SemR : Resin veneer on the Pd-Ag alloy without gold coating. Group GbsR : Resin veneer on the Ni-Cr alloy with gold coating Group BasR : Resin veneer on the Ni-Cr alloy without gold coating. In this study, colors of metal surfaces and veneered resins were evaluated by the CIE $L^{*}a^{*}b$ system. The results obtained were as follows : 1. different alloy types and gold coating make the $L^{*}a^{*}b$ system. 2. The ${\Delta}E^*$ab value between groups semi and Base was less than 1.5 and there was no $a^*$ and $b^*$ value difference between groups Gsem and Gbas 3. The values of $L^*$ and $a^*$ ain groups GsemR and GbasR were so similar that the ${\Delta}E^*$ab value was as small as 0.58. 4. In resin specimens with gold coated semiprecious or base alloys showed yellower and redder deviation than the resin specimens with precious alloy. 5. The ${\Delta}E^*$ab values between goups PreR-GsemR and groups PreR-GbasR were as small as 2.68 and 2.22 respectively.

  • PDF

Electrode properties upon the substitution of Mo for Mn in Zr-basd AB2-type Hydrogen Storage Alloys (Zr1-xTixV0.4Ni1.2Mn0.4-yMoy계 합금전극의 Mo 함량에 따른 물성 및 전극특성)

  • Seo, Chan-Yeol;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.189-202
    • /
    • 2000
  • $AB_2$ type Zr-based Laves phases alloys have been studied for potential application as a negative electrode in a Ni-MH battery. The $AB_2$-type electrodes have a much higher energy density than $AB_5$-type electrodes per weight, however they have some disadvantages such as poor activation behavior and cycle life etc. Nonetheless, the $AB_2$-type electrodes have been studied very extensively due to their high energy density. In this study, in order to develop the cycle life, the Mn of $AB_2$ alloy composition was substituted partially by Mo. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The alloy powder was used below 200-325 mesh for experiments. The structures and phases of the alloys were analyzed by XRD, SEM and EDS, and measured the curve of a pressure-composition isotherms. The electrodes were prepared by cold pressing of the copper-coated(25 wt%) alloy powders, and tested by a half cell. The results are summarized as follows. The cycle life was improved with the increase of Mo amount in $Zr_{1-x}Ti_xV_{0.4}Ni_{1.2}Mn_{0.4}Mo_y$(x=0.3, 0.4) and the activation was faster, whereas the discharge capacity decreased.

  • PDF

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

Electrochemical Properties of the AB2-type Metal Hydride Electrode Prepared by Ball Milling (Ball milling한 AB2계 금속수소화물 전극의 전기화학적 특성)

  • Choi, Seung-Jun;Shim, Jong-Su;Oh, Se-Ung;Noh, Hak;Choi, Jeon;Seo, Chan-Yeol;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.181-185
    • /
    • 1997
  • The electrochemical properties of the $AB_2$-type (Zr-Ti-V-Ni-Cr-Co-Mn) metal hydride electrodes prepared by ball milling with $AB_5-type\{(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}\}$(LM : Lanthanum-rich mischmetal) alloy powder as a surface activator were investigated. By ball milling with $AB_5$ type alloy powder, the activation of $AB_2$ type metal hydride electrode was accelerated resulting in an increase of discharge capacity from 35% to 85% of the maximum capacity at the first cycle. As the amount of surface activator increased the activation rate increased, whereas the discharge capacity increased with 10wt% and decreased with 20wt% addition of the surface activator. When the amount of the surface activator was kept constant as 10wt%, the discharge capacity and the activation rate increased with ball milling time up to 20 hours. However beyond 20 hours of ball milling time, they decreased drastically due to the nano-crystallization or amorphorzation of the alloy powder.

  • PDF