• Title/Summary/Keyword: $A^{p,{\alpha}$

Search Result 5,453, Processing Time 0.039 seconds

Synthesis of Glycosides by Transglycosylation of α-Amylase from Starch (전분으로부터 α-amylase에 의한 배당체의 합성)

  • Park, Jong Yi;Lee, Tae Ho
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 1998
  • Glycosides were synthesized using transglycosylation reaction of amylase in water system. The glycosides synthesized in water phase by a-amylase with starch as a glycosyl donor and benzylalcohol as an acceptor were identified as benzylalcohol-${\alpha}$-glucoside (BG) and benzylalcohol-${\alpha}$-maltoside (BM) of which one molecule of benzylalcohol was bound to 1-OH of glucose. The final products were BG in reaction system of pH 5.0, and BM in that of pH 8.0. The transglycosylation reaction by ${\alpha}$-amylase were carried out in water system containing 50 mg starch, 50 mg benzylalcohol, and 10 units enzyme at $30-35^{\circ}C$ for 3 days. The synthesized BG was hydrolyzed to glucose and benzylalcohol by ${\alpha}$-glucosidase, while ${\alpha}$-amylase hydrolyzed BM to glucose and benzylalcohol-${\alpha}$-glucoside in pH 5.0. Maltotriose resemble structurally to BM was rapidly hydrolyzed to glucose and maltose by ${\alpha}$-amylase at pH 5.0, being slightly hydrolyzed at pH 8.0, but not transglycosylated in present of benzylalcohol.

  • PDF

ON SUBCLASSES OF P-VALENT FUNCTIONS STARLIKE IN THE UNIT DISC

  • Aouf, M.K.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1988
  • For a positive integer p, $A_p$ will denote the class of functions $f(z)=z^p+\sum\limits^{\infty}_{n=p+1}a_nz^n$ which are analytic in the unit disc U = {z: |z| <1}. For $0{\leq}{\alpha}{\leq}1$, 0<${\beta}{\leq}1$, $0{\leq}{\lambda}$ $S_p({\alpha},{\beta},{\lambda})$ denote the class of functions $f(z){\in}A_p$ which satisfy the condition $\left|\frac{{\frac{zf^{\prime}(z)}{f(z)}}-p}{{{\alpha}{\frac{zf^{\prime}(z)}{f(z)}}+p-{\lambda}(1+{\alpha})}}\right|$<${\beta}$ for $z{\in}U$ In this paper we obtain a representation theorem for the class $S_p({\alpha},{\beta},{\lambda})$ and also derive distortion theorem and sharp estimates for the coefficients of this class.

  • PDF

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

ON A CLASS OF UNIVALENT FUNCTIONS

  • NOOR, KHALIDA INAYAT;RAMADAN, FATMA H.
    • Honam Mathematical Journal
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 1993
  • For A and B, $-1{\leq}B<A{\leq}1$, let P[A, B] be the class of functions p analytic in the unit disk E with P(0) = 1 and subordinate to $\frac{1+Az}{1+Bz}$. We introduce the class $T_{\alpha}[A,B]$ of functions $f:f(z)=z+\sum\limits_{n=2}^{{\infty}}a_nz^n$ which are analytic in E and for $z{\in}E$, ${\alpha}{\geq}0$, $[(1-{\alpha}){\frac{f(z)}{z}}+{\alpha}f^{\prime}(z)]{\in}P[A,B]$. It is shown that, for ${\alpha}{\geq}1$, $T_{\alpha}[A,B]$ consists entirely of univalent functions and the radius of univalence for $f{\in}T_{\alpha}[A,B]$, $0<{\alpha}<1$ is obtained. Coefficient bounds and some other properties of this class are studied. Some radii problems are also solved.

  • PDF

SOME CLASSES OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS I

  • AUOF, M.K.;DARWISH, H.E.
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.119-135
    • /
    • 1994
  • Let $Q_{n+p-1}(\alpha)$ denote the- dass of functions $$f(z)=z^{P}-\sum_{n=0}^\infty{a_{(p+k)}z^{p+k}$$ ($a_{p+k}{\geq}0$, $p{\in}N=\left{1,2,{\cdots}\right}$) which are analytic and p-valent in the unit disc $U=\left{z:{\mid}z:{\mid}<1\right}$ and satisfying $Re\left{\frac{D^{n+p-1}f(\approx))^{\prime}}{pz^{p-a}\right}>{\alpha},0{\leq}{\alpha}<1,n>-p,z{\in}U.$ In this paper we obtain sharp results concerning coefficient estimates, distortion theorem, closure theorems and radii of p-valent close-to- convexity, starlikeness and convexity for the class $Q_{n+p-1}$ ($\alpha$). We also obtain class preserving integral operators of the form $F(z)=\frac{c+p}{z^{c}}\int_{o}^{z}t^{c-1}f(t)dt.$ c>-p $F\left(z\right)=\frac{c+p}{z^{c}}\int_{0}^{z} t^{c-1}f\left(t \right)dt. \qquad c>-p$ for the class $Q_{n+p-1}$ ($\alpha$). Conversely when $F(z){\in}Q_{n+p-1}(\alpha)$, radius of p-valence of f(z) has been determined.

  • PDF

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae (출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축)

  • Jung, Hoe-Myung;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1403-1409
    • /
    • 2017
  • In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.

Cloning and Expression of A Liquefying $\alpha$-Amylase Gene from Bacillus amyloliquefaciens in Bacillus subtilis (Bacillus amyloliquefaciens 액화형 $\alpha$-amylase 유전자의 클로닝 및 Bacillus subtilis에서의 발현)

  • 김사열;송방호;이인구;서정환;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.479-485
    • /
    • 1986
  • A 5200 basepair DNA fragment containing the Bacillus amyloliquefaciens amyE gene, encoding liquefying $\alpha$-amylase (1,4-$\alpha$-1)-glucan glucanohydrolase, EC 3.2.1.1), has been inserted into BamHI site of the pUB110 and the hybrid plasmid was designated as pSKS3. The pSKS3 was transformed into the Bacillus subtilis KM2l3 as a host which is a saccharifying $\alpha$-amylase deficient mutant of Bacillus subtilis NA64, and the plasmid in the transformed cell was expressed $\alpha$-amylase production and kanamycin resistance. The $\alpha$-amylase production of the transformed cell was reduced to one fifth of that of the donor strain. The Bacillus subtilis KM2l3 tarring pSKS3 indicated that the amyE gene product is a polypeptide which has the same electrophoretic mobility with that of the Bacillus amyloliquefaciens, but different from the saccharifying $\alpha$-amylase of Bacillus subtilis NA64. It means that the amyE gene of pSKS3 originales from the Bacillus amyloliquefaciens.

  • PDF

Characterization of Extracellular \alpha-galactosidase Produced by Streptomyces sp. YB-4. (균체외 \alpha-galactosidase를 생산하는 Streptomyces sp. YB-4의 분리 및 효소 특성)

  • 김소영;조기행;김창진;박동진;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2002
  • A strain YB-4 producing the extracellular $\alpha$-galactosidase was isolated from soil, and has been identified as Streptomyces sp. on the basis of its cultural, morphological and physiological properties. The partially purified $\alpha$-galactosidase was most active on paranitrophenyl-$\alpha$-D-galactopyranoside at pH 6.0 and 6$0^{\circ}C$. The enzyme retained 90% of its maximum activity between pH 4.0 and pH 10.0 after pre-incubation for 1 h. The enzyme was able to hydrolyze oligomeric substrates such as melibiose, raffinose and stachyose to liberate galactose residue, indicating that the $\alpha$-galactosidase of Steptomyces sp. YB-4 hydrolyzed $\alpha$-1,6 linkage.

ON CERTAIN SUBCLASSES OF ANALYTIC P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Aouf, M.K.
    • East Asian mathematical journal
    • /
    • v.5 no.1
    • /
    • pp.1-23
    • /
    • 1989
  • Let $S_p*({\alpha},{\beta},{\mu})$ denote the class of functions $f(z)=z^p-{\sum}{\limit}^{\infty}_{n=1}a_{p+n}\;z^{p+n}(a_{p+n}{\geq}o,\;p{\in}N)$ analytic and p-valent in the unit disc $U=\{z:{\mid}z{\mid}<1\}$ and satisfy the condition $${\mid}\frac{\frac{zf'(z)}{f(z)}-p}{\mu\frac{zf'(z)}{f(z)}+p-(1+\mu)\alpha}\mid<\beta,\;z{\in}U$$, where $o{\leq}{\alpha} and $o\leq\mu\leq1$. Further f(z) is said to belong to the class $C_p*({\alpha},{\beta},{\mu})\;if\;zf'(z)/p{\in}S_p*(\alpha,\beta,\mu)$. In this paper we obtain for these classes sharp results concerning coefficient estimates, disortion theorems, closure theorems, Hadamard products and some distortion theorems for the fractional calculus.

  • PDF