ON CERTAIN SUBCLASSES OF ANALYTIC P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Aouf, M.K. (Department of Mathematics Faculty of Science University of Mansoura, Egypt)
  • Published : 1989.06.25

Abstract

Let $S_p*({\alpha},{\beta},{\mu})$ denote the class of functions $f(z)=z^p-{\sum}{\limit}^{\infty}_{n=1}a_{p+n}\;z^{p+n}(a_{p+n}{\geq}o,\;p{\in}N)$ analytic and p-valent in the unit disc $U=\{z:{\mid}z{\mid}<1\}$ and satisfy the condition $${\mid}\frac{\frac{zf'(z)}{f(z)}-p}{\mu\frac{zf'(z)}{f(z)}+p-(1+\mu)\alpha}\mid<\beta,\;z{\in}U$$, where $o{\leq}{\alpha} and $o\leq\mu\leq1$. Further f(z) is said to belong to the class $C_p*({\alpha},{\beta},{\mu})\;if\;zf'(z)/p{\in}S_p*(\alpha,\beta,\mu)$. In this paper we obtain for these classes sharp results concerning coefficient estimates, disortion theorems, closure theorems, Hadamard products and some distortion theorems for the fractional calculus.

Keywords