• Title/Summary/Keyword: ${\phi}{\lambda}$

Search Result 68, Processing Time 0.028 seconds

ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1979
  • Abelian군(群)의 presheaf에 관한 직적(直積)과 직화(直和)를 Category 입장에서 정의(定義)하고 presheaf $F_{\lambda}\;({\lambda}{\epsilon}{\Lambda})$들의 두 직적(直積)(또는 直和)은 서로 동형적(同型的) 관계(關係)에 있으며, 특히 ${\phi}:X{\rightarrow}Y$가 homeomorphism이라 하고 ${\phi}_*F$를 X상(上)의 presheaf F의 direct image이라 하면 (1) $({\phi}_*F, \;{\phi}_*(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직적(直積)일 때 오직 그때 한하여 $(F,\;(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직적(直積)이다. (2) $({\phi}_*F,\;{\phi}_*(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직화(直和)일 때 오직 그때 한하여 $(F,\;(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직화(直和)이다. Let $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $$\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda}$$ of $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ by $$(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U)=\prod_{{\lambda}{\epsilon}{\Lambda}}(F_{\lambda}(U))$$ for U open in X $${\rho}_v^u:\;(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U){\rightarrow}(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(V)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}(_{\lambda}{\rho}_v^u(s_{\lambda}))_{{\lambda}{\epsilon}{\Lambda}})$$ for $V{\subseteq}U$ open in X where $_{\lambda}{\rho}^U_V$ is a restriction of $F_{\lambda}$, And we have natural presheaf morphisms ${\pi}_{\lambda}$ and ${\iota}_{\lambda}$ such that ${\pi}_{\lambda}(U):\;({\prod}_\;F_{\lambda})(U){\rightarrow}F_{\lambda}(U)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}s_{\lambda})$ ${\iota}_{\lambda}(U):\;F_{\lambda}(U){\rightarrow}({\prod}\;F_{\lambda})(U)(s_{\lambda}{\rightarrow}(o,o,{\cdots}\;{\cdots}o,s_{\lambda},o,{\cdots}\;{\cdots}o)$ for $(s_{\lambda}){\epsilon}{\prod}_{\lambda}\;F_{\lambda}(U)$ and $(s_{\lambda}){\epsilon}F_{\lambda}(U)$.

  • PDF

A Study on the Vector Space by Taking the Tetra-cosine Rule (Tetra-cosine Rule 에 의한 Vector Space고찰)

  • 김건희;이수종;김홍건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.389-394
    • /
    • 1997
  • Consider a tetrhedron is composed of six dihedral angles .phi.(i=1,2..., 6), and a vertex of a tetrahedron is also three dihedral angles. It will assume that a vertex A, for an example, is composed of there angles definded such as .alpha..betha. and .gamma. !. then there is a corresponding angle can be given as .phi1.,.phi2.,.phi3.. Here, in order to differentiate between a conventional triangle and dihedral angle, if a dihedral angle degined in this paper is symbolized as .phi..LAMBDA.,the value of cos.theta.of .phi./sab a/, in a trigonometric function rule,can be defined to tecos.phi..LAMBD/sab A/., and it is defined as a tetradedral cosine .phi. or simply called a tecos.phi.. Moreover, in a simillar method, the dihedral angle of tetrahedron .phi..LAMBDA. is given as : value of sin .theta. can defind a tetra-sin.phi..LAMBDA., and value of tan .theta. of .phi..LAMBDA. is a tetra-tan .phi..LAMBDA. By induction it can derive that a tetrahedral geometry on the basis of suggesting a geometric tetrahedron

  • PDF

Molecular Phylogeny of Korean-type Coliphages and American-type Coliphages Determined by a RAPD Analysis (RAPD 분석법에 의한 한국형 대장균파아지와 미국형 대장균파아지의 분자적 계통분류)

  • 권오식
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • RAPD-PCR was applied to identify the phylogenetic relationship between isolated Korean-type coliphages ($\phi$C1, $\phi$C2, $\phi$C3 and $\phi$C4) and well-known American coliphages ($\phi$T2, $\phi$T4, $\phi$T5, $\phi$T7 and ${\phi}{\lambda}$). Subsequently, a computer analysis was carried out with the results of RAPD-PCR. As a result, 9 individuals were divided into five groups. The Korean-type coliphages formed a single cluster which showed very high genetic similarity but the American-type coliphages revealed very low genetic similarity among them. In particular, the $\phi$T2와 $\phi$T4 (T$_{even}$ phages) made one sub-cluster among American coliphages, and they were very distant from $\phi$T5, $\phi$T7 and ${\phi}{\lambda}$. However, ${\phi}{\lambda}$ made a cluster with the Korean-type coliphages that we isolated. The genome size of Korean-type coliphages was ranged from 25,000 bp to 35,000 bp. Among them, the genome of $\phi$C2 was the smallest and that of $\phi$C1 was the biggest, while others were in the middle of the size.

  • PDF

CRITICAL POINTS AND MULTIPLE SOLUTIONS OF A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

  • Choi, Kyeongpyo
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.259-271
    • /
    • 2006
  • We consider a semilinear elliptic boundary value problem with Dirichlet boundary condition $Au+bu^+-au^-=t_{1{\phi}1}+t_{2{\phi}2}$ in ${\Omega}$ and ${\phi}_n$ is the eigenfuction corresponding to ${\lambda}_n(n=1,2,{\cdots})$. We have a concern with the multiplicity of solutions of the equation when ${\lambda}_1$ < a < ${\lambda}_2$ < b < ${\lambda}_3$.

  • PDF

SPECTROPHOTOMETRICAL CLASSIFICATIONS OF STARS (별의 분광 측광학적 분류)

  • U, Jong-Ok
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.69-84
    • /
    • 1994
  • The spectral types of stars can be classified by using Balmer discontinuity($D_B$) and wavelength(${\lambda}_B$) expressed in terms of effective temperatures appeared in Balmer discontinuity. In this research, in order to classify stars, we used the well established observational data of high dispersion spectrophotometry for the spectral types and luminosity classes of stars in the Breger(1976) catalogue. Balmer discontinuity by effective temperatures of stars was accurately measured, and the ${\lambda}_B$ was replaced to luminosity classes of MK system, because of the close relationship between the As and luminosity classes. We measured the energy gradients(${\phi}_R$) of stars which were expressed as a function of spectral types in the interval of ${\lambda}{\lambda}4,000{\sim}4600{\AA}$, and then obtained a new physical parameter(${\phi}$) from the $D_B$ and ${\phi}_B$. The new parameter, ${\phi}$ can be used instead of HD classifications of stars and can be used widely for spectrophotometrical classifications of stars.

  • PDF

PERTURBATION OF WAVELET FRAMES AND RIESZ BASES I

  • Lee, Jin;Ha, Young-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.119-127
    • /
    • 2004
  • Suppose that $\psi{\;}\in{\;}L^2(\mathbb{R})$ generates a wavelet frame (resp. Riesz basis) with bounds A and B. If $\phi{\;}\in{\;}L^2(\mathbb{R})$ satisfies $$\mid$\^{\psi}(\xi)\;\^{\phi}(\xi)$\mid${\;}<{\;}{\lambda}\frac{$\mid$\xi$\mid$^{\alpha}}{(1+$\mid$\xi$\mid$)^{\gamma}}$ for some positive constants $\alpha,{\;}\gamma,{\;}\lambda$ such that $1{\;}<1{\;}+{\;}\alpha{\;}<{\;}\gamma{\;}and{\;}{\lambda}^2M{\;}<{\;}A$, then $\phi$ also generates a wavelet frame (resp. Riesz basis) with bounds $A(1{\;}-{\;}{\lambda}\sqrt{M/A})^2{\;}and{\;}B(1{\;}+{\;}{\lambda}\sqrt{M/A})^2$, where M is a constant depending only on $\alpha,{\;}\gamma$ the dilation step a, and the translation step b.

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF

SOBOLEV ORTHOGONAL POLYNOMIALS RELATIVE TO ${\lambda}$p(c)q(c) + <${\tau}$,p'(x)q'(x)>

  • Jung, I.H.;Kwon, K.H.;Lee, J.K.
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.603-617
    • /
    • 1997
  • Consider a Sobolev inner product on the space of polynomials such as $$ \phi(p,q) = \lambda p(c)q(c) + <\tau,p'(x)q'(x)> $$ where $\tau$ is a moment functional and c and $\lambda$ are real constants. We investigate properties of orthogonal polynomials relative to $\phi(\cdot,\cdot)$ and give necessary and sufficient conditions under which such Sobolev orthogonal polynomials satisfy a spectral type differential equation with polynomial coefficients.

  • PDF

Characteristic polynomials of graph bundles with productive fibres

  • Kim, Hye-Kyung;Kim, Ju-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 1996
  • Let G be a finite simple connected graph with vertex set V(G) and edge set E(G). Let A(G) be the adjacency matrix of G. The characteristic polynomial of G is the characteristic polynomial $\Phi(G;\lambda) = det(\lambda I - A(G))$ of A(G). A zero of $\Phi(G;\lambda)$ is called an eigenvalue of G.

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF