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INVOLUTION-PRESERVING MAPS WITHOUT THE
LINEARITY ASSUMPTION AND ITS APPLICATION

JIN-LI XU* , CHONG-GUANG CAO AND HAI-YAN WU

ABSTRACT. Suppose F is a field of characteristic not 2 and F # Z3. Let
M, (F) be the linear space of all nx n matrices over F, and let ['»(F) be the
subset of My, (F) consisting of all n X n involutory matrices. We denote by
®,,(F) the set of all maps from M, (F) to itself satisfying A — AB € T'n(F)
if and only if #(A) — A¢(B) € T'n(F) for every A, B € Mp(F)and A€ F. It
was showed that ¢ € @, (F) if and only if there exist an invertible matrix
P € M, (F) and an involutory element ¢ such that either ¢(A) = ePAP~!
for every A € Mn(F) or ¢(A) = ePATP~1 for every A € My,(F). As an
application, the maps preserving inverses of matrces also are characterized.
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1. Introduction

At present, some researchers are more interested in the study of the Pre-
server Problems without “linearity” assumption (see [1]-[8]). One of important
techniques in the study of linear preserver problems is to reduce new linear pre-
server problems to the known ones (see [9]-[11]). However, the example using
the reduce technique in the study of invariant preserver problem without the
“linearity” assumption has not appeared in the literature. In this paper, after
defining a sequence of sets (i.e. the following N, (k),k =0,1,--- ,n?), we charac-
terize involution-preserving maps without the linearity assumption by reducing
it to the known idempotent preserver, furthermore, the maps preserving inverses
of matrices are also characterized.

Suppose F is a field of characteristic not 2 and F # Zz. Let M,(F) be
the linear space of all n x n matrices over F, and let ,(F) be a subset of
M, (F). We denote by ®(Q,(F)) the set of all maps from M,(F) to itself
satisfying A — AB € Q,(F) if and only if ¢(A) — Ap(B) € Qu(F) for every
A,B € M,(F) and A € F. Denote I'n(F) = {A|A € M,(F) and A? = L.},
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P.(F) = {A]A € M,(F) and A* = A}. In this paper, the general form of
surjections in ®(T',(F)) are determined, and thereby, as an application, the the
surjective maps preserving inverses of matrices are also characterized.

Denote by [1,n] the set {1,2,---,n}. For any ¢,j € [1,n], Ej; expresses the
matrix with 1 in the (4, j)th position and 0 elsewhere. Let O, and I, be the r X7
zero matrix and r x r identity matrix. Denote by “@ ” the usual direct sum of
matrices. Now, we define a sequence of sets by

Nn(o) = {On}
No(k) ={AlA € M,(F),3x #0,B € N,(k—1),st. \A+B € P, (P}, Vke 1, ng].

2. Main results

Lemma 1. Suppose F is a field of characteristic not 2, then A € P, (F) if and
only if I, — 2A € I',{F).

Proof. The proof is simple, so we omit it. o

Lemma 2. Suppose F is a field of characteristic not 2, and ¢ € ®(I'(F)) is a
surjective map, then ker ¢ = N,(0).

Proof. Since ¢ € ®(T',(F)) is a surjective map, then ker ¢ # @, and thereby
¢(In) — Ap(A) = ¢(In) € Tn(F),V A€ kerp, A€ F

Hence I,, — AA € I',,(F). Noting that chF # 2, we have A = O,,. ie., ker¢ =
N,(0). 0

Lemma 3. Suppose F is a field of characteristic not 2, and ¢ € ®(Tr(F)) is a
surjective map, then ¢(I,,) € {—~In, I}

Proof. For any given A € I',(F) \ {—1I,, I}, there exist an invertible matrix P
and k € [1,n — 1] such that A = P(I; ® —I,_x)P~!. Denote B = PEj x4+1P~,
obviously, B # O, and A — AB € I',(F) for any A € F, and thereby #(4) —
AP(B) € T, (F) for any A € F.

If ¢(A) € {—I,,I,}, then it is easily verified that ¢(B) = O, which con-
tradicts with Lemma 2. Noting that ¢ is a surjective map, we complete the
proof. [

Lemma 4. Suppose F is an arbitrary field, then M, (F) = UZ;} Np(k).

Proof. It is easy to see that for any given k € [0,7n%], A € Nn(k) if and only if
pA € Nyp(k),¥Y p € F\ {0}.
For any glven A € M, (F), there exist Ax € P, . (F),ar, € F and k € [1,n%

such that A = Z arAg. If A= Oy, then A € N,(0). If A # Oy, without loss
k=1

of generality, we assume a; £ 0,Vk € [1,{] and A = Z arpAg.
, E=1
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: t
Now, we will prove Y axAx € N, (t) by induction on ¢.
k=1
When t = 1, it follows from a; (a1 41) + O, € P,(F) that a1A; € Np(1).
Assume that > apAg € Np(s), then
k=1

s+1 s
asy1”" Z arAx — a; )y Z arAr = Asy1 € Pu(F),
k=1 k=1
s+1 2
and therefore " axAy € Ny(s+1). Thus, 4 € Jy_o Nn(k). a
k=1

Lemma 5. Suppose F is a field of characteristic not 2 and ¥ # Z3, and ¢ €
O(T,.(F)) satisfies ¢(1,) = I, then

$(uln — 2A4) = pul, — 26(A),Y A € My(F),u € F.

Proof. Based on Lemma 4, we prove the conclusion by induction on A € N (k), k €
[0,n%. Tt follows from ul, — (u — 1)1, = I, € Tn(F), and ply, — (u + 1)1, =
—I, € I'(F) that

¢(uln) — (= 1)¢(In) € Tn(F), ¢p(uln) — (1 +1)¢(In) € In(F)

Together with ¢(I,,) = I,,, we get (¢(ul,,) — ul,) £ I, € I'y(F), and thereby
&(ul,) = pl,. i.e., the conclusion holds for A = O,, € N,(0).

Assume the conclusion holds for any B € N,(k — 1). Now, we prove the
conclusion holds for any A € N, (k).

It follows from the definition of N, (k) that there exist B € Nyp(k — 1) and
A € F\{0} such that AA+B € P, (F). By Lemma 1, we obtain (I, —2B)—2XA €
['»(F). This, together with ¢ € ®(I',(F)), implies ¢(I, —2B) —2Ap(A) € I'n(F).
For B € N,(k — 1), using the inductive hypothesis, we have ¢(I, — 2B) =
I, — 2¢(B). Hence, I,, — 2¢(B) — 2A¢(A) € I'n(F). By Lemma 1, we derive
Ao(A) + ¢(B) € P,(F), so there exists an invertible matrix P € M,(F) such
that

A(A) + ¢(B) = P(Ip ® On—p) P 1)

Let 0 € F\ {—),0,\} and € € {—1,1}. We first prove

(i) ¢(el, — 20A) = eI, — 20¢(A) for any A € Ny (k) holds.

It follows from (eI, —20A)+20A = eI, € T,,(F) and ((1 — Ao~ 'e) I, — 2B)+
Ao7(el, — 20A) = I,, — 2(AA+ B) € T, (F) that

(el —20A) +200(A) € T, (F) (2)
and
#((1 —Ao71e)I, — 2B) + Aot ¢(el, — 204) € T,(F). (3)
Since B € N, (k — 1), by the inductive hypothesis , we get
é((1 = o), — 2B) = (1 — Mo~ te),, — 2¢(B). (4)
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Substituting (1) into (2), we derive ’
(¢(eln — 20A) + 20(A1P(I, ® Op—p) P~ — A714(B)))? = I,,. (5)
Substituting (4) into (3), we obtain
(L = Ao7te), — 2¢(B) + Ao ¢(el, — 204))° = I,. (6)

Denote £ = Ao~ !. It follows from o € F\ {-A,0,A} that £ € F\ {-1,0,1}.
Denote

#(el, —204) — 2077 ¢(B) = PXP~ 1, (7)
Substituting £ = Ao~ and (7) into (5) and (6), we have
(X + 25_1(11) ® On—p))z =1I (8)
and
(X + (€7 - e)[n)? = £ 2. ©)

Combining (8) and (9), we obtain
(- X - elp) = ’5_1(X(Ip ® On—p) + (I ® Opn—p)X) + 267%(I; ® On—p).
Noting that £ € F'\ {~1,0,1}. We get X = (¢ — 26~ 1), ® el,_, . Hence
d(el, — 20A) = PXP~1 4 22~ Y0 ¢(B)
=el, — 267 'P(I, ® Op_p) P! + 237 10¢(B)
=el, ~ 227 o(Ap(A) + ¢(B)) + 22" Lo¢(B)
=¢l, — 20¢(A).

(10)

Now, we prove

(ii) ¢(vIn — 20A4) = vI, — 20¢(A), where v € F\ {-1,1},0 € F\ {=),0,)}.
It follows from v € F\{—1,1} and o € F\{-\,0, A} that there exists 6 € {-1,1}
such that (y — 8)"1o # £A. In fact, if (y — 1)"0 = %A, then (y — 1)A =
+o, and thereby (y + 1)\ = 2A + 0 & {—0, 0}, (otherwise, it controdicts with
o € F\{=X0,A} and A # 0). Therefore, (y + 1)"lo # +A. Similarly, it
follows from (v + 1)71o = £ that (y — 1)~lo # £\. Besides, it follows from
(vIn —20A) ~ (y = 8)(In — 20(y — 8) "1 A) = 61, € T,o(F) and ((L— Ao~ 1)1, —
2B) + Ao~ Y(yI, — 204) = I, — 2(AA + B) € T',(F) that

¢(vIn ~ 204) = (v = §)¢(In — 20(y — §) "1 A) € Tu(F) (11)
and
(1L = \a™ Iy}, — 2B) + Ao~ 1¢(yI, — 204) € T, (F). (12)
Because of (y — 0) 1o # +), using (10) we have
(I, — 20(y — §)"LA) = I, — 20(y — 6)"Lp(A). (13)

Because of B € N, (k — 1), by the inductive hypothesis, we get
¢((1 — ™), = 2B) = (1 — 07 \y) I, — 2¢(B). (14)
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Substituting (1) and (13) into (11), we obtain
(@(vIn — 204) — (v = 8)In + 20X P(I, ® O)P™* = X'¢(B)))? = I,.

(15)
Substituting (14) into (12), we derive
o™ Yo(V I, — 20A) + (1 — Ao~ ), — 20(B))* = I,.. (16)
Let
o(vI —20A4) — 201" 1¢(B) — (y — 6)I = PYP™. an
Substituting (17) into (15) and (16), we derive
(Y +2671I, ® Opyp))? = I, (18)
(Y 4+ (7= 8I,) =721, (19)

Combining (18) and (19), we get

(1= 8)(Y = 6L,) =& (Y (Ip ® On_yp) + (Ip ® On—p)Y) + 26 %(I, ® Op_p).
Noting that Y = (§ — 261, @ 61,,—,, we have, for any 0 € F'\ {—X,0,A}
d(yI, —20A) = PYP~' + 227 0¢(B) + (v — 8§)I,, = vI, — 20¢(A). (20)

Finally, we prove the conclusion in Lemma 5 Since F # Zs, then |F \
{=X,0,A}| > 2. For any p € F,o € F\ {—A,0, A}, it follows from

(1 — po)l, + 20A) + o(ul, — 24) = I, € I'y(F)

that

A((1 — po)l, +20A) + op(pul, — 24A) € Ty (F). (21)
In views of o0 € F\ {—X,0, A}, (10) and (20), we have

&((1 — po)l, +204) = (1 — po)I, +204(A). (22)

Substituting (22) into (21), we get
Iy + o(d(ul, — 24) — ul, +2¢(A)) €Ty (F),V 0 € F\{=X\0,A}.

Hence o(¢(ul, — 2A4) — pul, +2¢(A)) = O,. From o # 0, we know that ¢(ul, —
24) = pl, — 2¢(A) for any A € N, (k). We complete the proof. O

Theorem 1. Suppose F is a field of characteristic not 2 and F # Z3, and ¢ €
O[T, (F)) is a surjective map. Then there exist an invertible matriz P € My (F)
and an involutory element € € F such that either ¢(A) = ePAP™! for any
AeMc(F) or p(A) =ePATP! for any A € M, (F).
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Proof. By Lemma. 3 we have ¢(I,,) € {~1I,, I}
Case 1. ¢(I,) = I,,. Tt follows from Lemma 5 that

A~ AB € Po(F) & (I —2A) +2AB € T,(F)
< oI — 2A) + 20¢(B) = I — 2¢(A) + 2X¢(B) € I'n(F)
< ¢(A) — Mp(B) € P,(F) VA Be M,(F), €F.
So ¢ € ®(P,(F)). By [3, theorem 1] , there exists an invertible matrix P €
M,(F) such that
$(A) = PAP7Y VYV A € M,(F) or ¢(A) = PATP, V A € M, (F).

Case 2. ¢(In) = —I,. Let p(X) = —¢(X), VX € Mp(F). Then ¢ €
(T (F)), ¥(In) = I,, and ¢ is a surjective map. Hence there exists an invertible
matrix P € M, (F) such that

¢(A) = ~PAP™', YV Ae M, (F) or ¢(4) = —PATP~!, ¥ A€ M,(F).

O
4. Application

Theorem 2. Suppose F is a field of characteritic not 2 and F # Zs. A surjective
map ¢ : Mo (F) — M,,(F) satisfies A—AB = C~! if and only if (A) — Ap(B) =
#(C)~, where A,B,C € M,(F),\ € F and C is an invertible matriz. Then
there exists an invertible matrizc P € M,(F) and an involutory element ¢ € F
such that either p(A) = ePAP™ ', ¥ A € M,(F) or (A) = ePATP~1, V A€
M, (F).
Proof. Obviously, for any invertible matrix A — AB € M, (F), we have O((A—
AB)~1) = (¢(A) — Ap(B))~! and ¢(A~!) = (#(A))~! while A = 0. Hence,
A-ABeT,(F)=(A-AB)"' =A- B
= ¢(A4) — A$(B) = (¢(A—AB)™)™' = ¢(A - AB)

= ¢((A—AB)™!) = (¢(A) ~ M(B))
= ¢(A) — A$(B) € ['n(F).
On the contrary, if ¢(A) — A\p(B) € I',,(F), then
B(A) — A(B) = ($(4) — AB(B)) ™" = $((A — AB)~1) = (4(A4 — AB))~*

This means A — AB = (A — AB)™}, and thereby A — AB € I',(F). So ¢ €
®(I',(F)). Thus, by Theorem 1, we complete the proof. O

5. Remark

The method in this paper is also available for the upper triangular matrix
space. The followings are some open problems related to this paper.

Can the surjection assumption be omitted?

When chF=2, characterizing the forms of elements in ®(T,(F)) is an open
problem as well.
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