• Title/Summary/Keyword: ${\mu}$-bolometer

Search Result 15, Processing Time 0.02 seconds

Analyses of temperature change of a u-bolometer in Focal Plane Array with CTIA bias cancellation circuit (CTIA 바이어스 상쇄회로를 갖는 초점면 배열에서 마이크로 볼로미터의 온도변화 해석)

  • Park, Seung-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2311-2317
    • /
    • 2011
  • In this paper, we study the temperature change of a ${\mu}$-bolometer focal plane array with a capacitive transimpedance amplifier bias cancellation circuit. Thermal analysis is essential to understand the performance of a ${\mu}$-bolometer focal plane array, and to improve the temperature stability of a focal plane array characteristics. In this study, the thermal analyses of a ${\mu}$-bolometer and its two reference detectors are carried out as a function of time. The analyses are done with the $30{\mu}m$ pitch $320{\times}240$ focal plane array operating of 60 Hz frame rate and having a columnwise readout. From the results, the temperature increase of a ${\mu}$-bolometer in FPA by an incident IR is estimated as $0.689^{\circ}C$, while the temperature increase by a pulsed bias as $7.1^{\circ}C$, which is about 10 times larger than by IR. The temperature increase of a reference detector by a train of bias pulses may be increased much higher than that of an active ${\mu}$-bolometer. The suppression of temperature increase in a reference bolometer can be done by increasing the thermal conductivity of the reference bolometer, in which the selection of thermal conductivity also determines the range of CTIA output voltage.

Electro-thermal Feedback Effects on the Signal in a Pulse Voltage Biased μ-bolometer Focal Plane Array (마이크로 볼로미터 초점면 배열에서 전기-열적 피드백 현상이 신호에 미치는 영향)

  • Park, Seung-Man;Han, Seungoh
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1886-1891
    • /
    • 2012
  • In this paper, the analytical models for the electrothermal feedback of a ${\mu}$-bolometer focal plane array(FPA) are proposed and applied to the conceptually designed FPA to investigate the electrothermal feedback effect on bolometer FPA signal. The temperature and resistance change of the ${\mu}$-bolometer by the electrothermal feedback(ETF) model are increased upto 20 and 35.7 % of those of no feedback case, respectively, while those by the effective thermal conductance(ETC) model increased 8.5 and 15.1 %. The integration current and output voltage of a CTIA used as an column amplifier of FPA are also increased upto 41.6 and 32.4 % by the ETF model, while increased upto 17.2 and 13.5 % by the ETC model. The proposed models give more accurate temperature change, accordingly larger signal than no feedback considering case. Electrothermal feedback effect should be considered to design a high performance and high density ${\mu}$-bolometer FPA. The proposed models are very useful to investigate the transient thermal analysis, also considered to be useful to predict the responsivity and dynamic range of ${\mu}$-bolometer FPAs.

The Performance Modeling of a VGA Bolometer with Self-Aligned Structure (자기정렬 구조를 갖는 VGA급 볼로미터의 성능 모델링)

  • Park, Seung-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.450-455
    • /
    • 2010
  • The performance modeling of a $25{\mu}m$ pitch VGA ${\mu}$-bolometer with the self-aligned thermal resistor structure is carried out. The self-aligned thermal resistor can be utilized for the maximizing the thermal resistance and the fill factor of a bolometer, so the performance improvement can be expected. From the results of the performance modeling of the micro-bolometer with self-align thermal resistor for a $25{\mu}m$ pitch $640{\times}480$ microbolometer designed with $0.6{\mu}m$ minimum feature size, the drastic improvements of NETD from 38.7 mK to 19.1 mK, responsivity of 1.9 times are expected with a self aligned thermal resistor structure. The main reason for the performance improvements with a self-aligned thermal resistor structure comes from the increasement of the thermal resistance.

Bolometer-Type Uncooled Infrared Image Sensor Using Pixel Current Calibration Technique (화소 전류 보상 기법을 이용한 볼로미터 형의 비냉각형 적외선 이미지 센서)

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Oh, Chang-woo;Shin, Jang-Kyoo;Park, Jae-Hyoun;Lee, Kyoung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.349-353
    • /
    • 2016
  • Recently, research on bolometer-type uncooled infrared image sensor which is made for industrial applications has been increasing. In general, it is difficult to calibrate fixed pattern noise (FPN) of bolometer array. In this paper, average-current calibration algorithm is presented for reducing bolometer resistance offset. A resistor which is produced by standard CMOS process, on the average, has a deviation. We compensate for deviation of each resistor using average-current calibration algorithm. The proposed algorithm has been implemented by a chip which is consisted of a bolometer pixel array, average current generators, current-to-voltage converters (IVCs), a digital-to-analog converter (DAC), and analog-to-digital converters (ADCs). These bolometer-resistor array and readout circuit were designed and manufactured by $0.35{\mu}m$ standard CMOS process.

Variation in IR Absorption Characteristics of a Bolometer by Resistive Hole-array Patterns (저항성 홀배열이 적용된 볼로미터의 적외선 흡수 특성 변화)

  • Kim, Tae Hyun;Oh, Jaesub;Park, Jongcheol;Kim, Hee Yeoun;Lee, Jong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.306-310
    • /
    • 2018
  • In order to develop a highly sensitive infrared sensor, it is necessary to develop techniques for decreasing the rate of heat absorption and the transition of the absorption wavelength to a longer wavelength, both of which can be induced by decreasing the pixel size of the bolometer. Therefore, in this study, $1{\mu}m$ hole-arrays with a subwavelength smaller than the incident infrared wavelength were formed on the amorphous silicon-based microbolometer pixels in the absorber, which consisted of a TiN absorption layer, an a-Si resistance layer and a SiNx membrane support layer. We demonstrated that it is possible to reduce the thermal time constant by 16% relative to the hole-patternless bolometer, and that it is possible to shift the absorption peak to a shorter wavelength as well as increase absorption in the $4-8{\mu}m$ band to compensate for the infrared long-wavelength transition. These results demonstrate the potential for a new approach to improve the performance of high-resolution microbolometers.

Averaging Current Adjustment Technique for Reducing Pixel Resistance Variation in a Bolometer-Type Uncooled Infrared Image Sensor

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Lee, Junwoo;Park, Jae-Hyoun;Lee, Kyoung-Il;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • This paper presents an averaging current adjustment technique for reducing the pixel resistance variation in a bolometer-type uncooled infrared image sensor. Each unit pixel was composed of an active pixel, a reference pixel for the averaging current adjustment technique, and a calibration circuit. The reference pixel was integrated with a polysilicon resistor using a standard complementary metal-oxide-semiconductor (CMOS) process, and the active pixel was applied from outside of the chip. The averaging current adjustment technique was designed by using the reference pixel. The entire circuit was implemented on a chip that was composed of a reference pixel array for the averaging current adjustment technique, a calibration circuit, and readout circuits. The proposed reference pixel array for the averaging current adjustment technique, calibration circuit, and readout circuit were designed and fabricated by a $0.35-{\mu}m$ standard CMOS process.

Implementation of Infrared Thermal Image Processing System for Disaster Monitoring (재난 감시를 위한 적외선 열화상 처리 시스템의 구현)

  • Kim, Won-Ho;Kim, Dong-Keun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • This paper presents design and implementation of infrared thermal image processing system based on the digital media processor for disaster monitoring. The digital thermal image processing board is designed and implemented by using commercial chips such as DM642 processor and video encoder, video decoder. The implemented functions for disaster monitoring are to analyze temperature distribution of a monitoring infrared thermal image and to detect disaster situation such as fire. For the input of infrared thermal image processing system, an infrared camera of type of the $320\;{\times}\;240\;{\mu}$-bolometer is used. The required functions are confirmed with 10 frame/second of processing performance by testing of the prototype and Practicality of the system was verified.

Design and analysis of a signal readout integrated circuit for the bolometer type infrared detect sensors (볼로미터형 적외선 센서의 신호처리회로 설계 및 특성)

  • Kim, Jin-Su;Park, Min-Young;Noh, Ho-Seob;Lee, Seoung-Hoon;Lee, Je-Won;Moon, Sung-Wook;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.475-483
    • /
    • 2007
  • This paper proposes a readout integrated circuit (ROIC) for $32{\times}32$ infrared focal plane array (IRFPA) detector, which consist of reference resistor, detector resistor, reset switch, integrated capacitor and operational amplifier. Proposed ROIC is designed using $0.35{\;}{\mu}m$ 2P-4M (double poly four metal) n-well CMOS process parameters. Low noise folded cascode operational amplifier which is a key element in the ROIC showed 12.8 MHz unity-gain bandwidth and open-gain 89 dB, phase margin $67^{\circ}$, SNR 82 dB. From proposed circuit, we gained output voltage variation ${\Delta}17{\};mV/^{\circ}C$ when the detector resistor varied according to the temperature.

Modeling of a Superconducting Flux Flow Sensor Inductance Radiometer (인덕턴스 복사계 측정을 위해 사용된 초전도 자속 흐름 센서기 모델링)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Choi, Myong-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.19-22
    • /
    • 2003
  • For use in constructing highly sensitive thermal detectors, the present authors have been studying the preparation of Superconducting Flux Flow Sensor(SFFS). In this research, SFFS with five channel ($5{\mu}m$/1channel) has been fabricated based on the flux flow using high temperature superconducting thin films by the ICP etching technique. We have designed a bolometer based on the temperature dependence of the kinetic inductance of a superconducting flux flow thin film. In this paper examines the fabrications and flux flow resistance and thermometer responses of the highly sensitive sensor constructed of a thin YBCO film. It is also suggested that they will be applicable to a new type of flux flow sensor.

  • PDF

Radiative transfer analysis for Amon-Ra instrument

  • Seong, Se-Hyun;Ryu, Dong-Ok;Lee, Jae-Min;Hong, Jin-Suk;Kim, Seong-Hui;Yoon, Jee-Yeon;Park, Won-Hyun;Lee, Han-Shin;Park, Jong-Soo;Yu, Ji-Woong;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.28.4-29
    • /
    • 2009
  • The 'Amon-Ra' instrument of the proposed 'EARTHSHINE' satellite is a dual (i.e. imaging and energy) channel instrument for monitoring the total solar irradiance (TSI) and the Earth's irradiance at around the L1 halo orbit. Earlier studies for this instrument include, but not limited to, design and construction of breadboard Amon-Ra imaging channel, stray light suppression and system performance computation using Integrated Ray Tracing (IRT) technique. The Amon-Ra instrument is required to produce 0.3% in uncertainty for both Sunlight and Earthlight measurement. In this study, we report accurate estimation of the output electric signal derived from the orbital variation of radiant exitance from the Sun and the Earth arriving at the aperture and detector plane of the Amon-Ra. For this, orbital irradiance are computed analytically first and then confirmed by simulation using Integrated Ray Tracing (IRT) model. Specially, the results show the arriving power at the bolometer detector surface is $1.24{\mu}W$ for the Sunlight and $1.28{\mu}W$ for the Earthlight, producing the output signal pulses of 34.31 mV and 35.47 mV respectively. These results demonstrate successfully that the arriving radiative power is well within the bolometer detector dynamic range and, therefore, the proposed detector can be used for the in-orbit measurement sequence. We discuss the computational details and implications as well as the simulation results.

  • PDF