• 제목/요약/키워드: ${\gamma}$-spectrum analysis method

검색결과 30건 처리시간 0.019초

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Research on a novel γ-ray spectrum analysis method for low- and intermediate-level radioactive solid waste in nuclear power plants

  • Xiangming Cai;Hui Yang;Xiyu Yang;Yixin He;Jian Shan
    • Nuclear Engineering and Technology
    • /
    • 제56권11호
    • /
    • pp.4688-4697
    • /
    • 2024
  • Accurate nuclide identification in γ-spectrum analysis of low- and intermediate-level radioactive waste with high-purity germanium detectors necessitates initial forced fitting with a nuclide library, yet inaccuracies in library data may lead to misidentification and missing nuclides. To this end, background clipping strategies were hereby analyzed, and a novel deconvolution spectrum analysis method was proposed, which utilized continuous wavelet transform for peak searching and Gaussian first-order derivative quadratic convolution for calculating peak width. Furthermore, to effectively realize the nuclide identification and peak area calculation, a response filter function model was established through the peak shape calibration. By eliminating the need for nuclide library parameter settings prior to overlapping peak separation, the issue of inaccurate matching arising from reliance on the precision of the nuclide library was addressed. Moreover, spectrum analysis experiments were carried out on standard point sources and 200 L drums, and the results were compared and analyzed using GammaVision. Compared to the GammaVision results set by the accurate nuclide library, the area error of strong peaks decreased from 27.5 % to 4.82 %, while that of weak peaks witnessed a decline from 49.98 % to 27.5 %. Finally, the accuracy of the proposed method was verified using the Pakistan Nuclear Library.

Gamma spectrum denoising method based on improved wavelet threshold

  • Xie, Bo;Xiong, Zhangqiang;Wang, Zhijian;Zhang, Lijiao;Zhang, Dazhou;Li, Fusheng
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1771-1776
    • /
    • 2020
  • Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.

Dosimetrical Analysis of Reactor Leakage Gamma-rays by Means of Scintillation Spectrometry

  • Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.291-309
    • /
    • 1973
  • TRIGA Mark II와 III 원자로의 여러가지 가동조건에 있어서 노벽으로 부터의 누설 ${\gamma}$선에 의한 조사선양률을 3"$\times$3"원통형 NaI(T1) 섬광계수기와 400 channel파 고분석장치로 측정하였는데 측정된 spectrum으로부터 조사선양률을 산출하는데는 실제적면에서 복잡하기 짝이 없는 response matrix 방법대신 정도가 좋으면서도 비교적 그 과정이 단순한 Moriuchi의 specturm -조사선양률 환산 이론을 적용하였다. 연구결과에 따르면 노심에서 발생된 누설 ${\gamma}$선의 기본적인 spectrum 형태는 원자로의 열출력이나 차장벽에 의한 강도의 감쇠에 별로 영향을 받지 않고 있으며 원자로 누설${\gamma}$선에 의란 전조사선양률의 공기중에서의 감쇠는 폭 넓은 energy분포에도 불구하고 지수함수적 감쇠를 하고 있음이 판명되있다. 이 전조사선양률은 원자로의 열출력에 대체로 비례하고 있으나 TRIGA Mark III과 같은 가동형노심의 경우는 측정된 spectrum이 매우 다양한바, 그로부터 산출된 전조사선양률의 크기에는 관계없이, spectrum 분해방법을 적용하여 노심에서 발생된 누설 ${\gamma}$선과 원자로가동중 발생되는 여지 ${\gamma}$선의 기여를 판별 해석하는데 성공하였다.

  • PDF

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

전기폭발법에 의해 제조된 자성 Fe2O3 나노 분말의 자기적 특성연구 (Study of Magnetic Fe2O3 Nano-particles Synthesized by Pulsed Wire Evaporation (PWE) Method)

  • 엄영랑;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.341-345
    • /
    • 2002
  • Nanoparticles of $Fe_2O_3$ with a mean particle size of 4-30 nm have been prepared by a pulsed wire evaporation method, and its structural and magnetic properties were studied by SQUID magnetometer and Mossbauer spectroscopy. From the main peak intensity of XRD and absorption rate of Mossbauer spectrum, the amounts of $\gamma-Fe_2O_3$ and $\alpha-Fe_2O_3$ in as-prepared sample are about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk $\gamma-Fe_2O_3$. The low value of coercivity and saturation magnetization indicate that the $\gamma-Fe_2O_3$ phase nearly shows the spin glass-like behavior. Analysis of the set of Mossbauer spectrum indicates a distribution of magnetic hyperfine fields due to the particle size distribution yielding 20 nm of average particle size. The magnetic hyperfine parameters are consistent with values reported of bulk $\gamma-Fe_2O_3$ and $alpha-Fe_2O_3$. A quadrupole line on the center of spectrum represents of superparamagnetic phase of $\gamma-Fe_2O_3$ with a mean particle size of 7 nm or below.

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

Response Matrix에 의한 감마선(線) Spectrum 및 그 조사선량(照射線量) 해석(解析) (Analysis of Gamma-ray Spectrum and Assessment of Corresponding Exposure Rate by Means of Response Matrix Method)

  • 김성관;전재식
    • Journal of Radiation Protection and Research
    • /
    • 제11권1호
    • /
    • pp.3-14
    • /
    • 1986
  • $3'{\times}3'$ 원통형 NaI(T1) 검출기와 다중파고분석기(多重波高分析器)를 사용하여 측정한 $0.05{\sim}2.0MeV$ 구간의 ${\gamma}$선 spectrum에서 실(實)spctrum을 구하기 위하여 조사선량율(照射線量率)산출에 편리한 response matrix 방법을 사용하였다. Response mateix 구성에는, 위의 에네지 구간을 0.1 MeV의 등간격으로 나눈 $20{\times}20$ matrix로 한것과 검출기의 분해능이 입사 ${\gamma}$선 에너지의 평방근(平方根)에 의존한다는 가정하에 $0.1(MeV)^{1/2}$구간으로 나누어 $14{\times}14$ matrix로 구성한, 두가지 방법을 사용하였으며 그 역(逆)matrix들은 P-E 82/32 콤퓨터로 계산하였다. 이 방법으로 얻은 조사선량율은 에너지와 flux가 알려진 ${\gamma}$선량(陽)에 대하여 흔히 사용되는 계산방법으로 구한값과 10% 이내에서 일치하고 있으며, 선량측정학적(線量測定學的) 견지에서는 $E^{1/2}$ 구간으로 형성된 matrix가 등에너지간격으로 구성된 것보다 현실적인 것으로 판단되었다.

  • PDF

Application of wavelet transform in anti-Compton phoswich detector for gamma spectrum

  • Changqi Liu;Kai Tao;Jinqiu Peng;Liming Huang;Dejun E;Weimin Li;Xiaohou Bai;Zhanwen Ma
    • Nuclear Engineering and Technology
    • /
    • 제56권10호
    • /
    • pp.4390-4396
    • /
    • 2024
  • The response of an anti-Compton phoswich detector to gamma rays was investigated using Monte-Carlo method, and the pulses from different crystal cases, including gamma deposition only in the LaBr3(Ce) or CsI(Tl) crystal and coincidence in both crystals, were analyzed. A novel pulse discrimination method for gamma deposition events based on wavelet transform analysis, called SSD (Scale Shape Discrimination), was developed in this study. Compared to the traditional PSD (Pulse Shape Discrimination) method, SSD has the advantage of transforming one-dimensional pulses in the time-domain into two-dimensional time-frequency spectra, providing the more useful features for pulse discrimination. The performances of the Compton suppression and Full-energy peak loss using PSD and SSD methods was studied. The results show that the Compton suppression factor IPSD = 5.12 and ISSD = 5.32, and FEP loss factor PLPSD = 0.0554 and PLSSD = 0.0587. Meanwhile, the influences of the cutoff values for pulse discrimination on the results of I and PL with different method were analyzed.

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.