DOI QR코드

DOI QR Code

Application of wavelet transform in anti-Compton phoswich detector for gamma spectrum

  • Changqi Liu (Institute of Advanced Science Facilities) ;
  • Kai Tao (Institute of Advanced Science Facilities) ;
  • Jinqiu Peng (Nuclear Power Institute of China) ;
  • Liming Huang (Institute of Advanced Science Facilities) ;
  • Dejun E (Institute of Advanced Science Facilities) ;
  • Weimin Li (Nuclear Power Institute of China) ;
  • Xiaohou Bai (School of Nuclear Science and Technology, Lanzhou University) ;
  • Zhanwen Ma (School of Nuclear Science and Technology, Lanzhou University)
  • Received : 2024.04.03
  • Accepted : 2024.05.31
  • Published : 2024.10.25

Abstract

The response of an anti-Compton phoswich detector to gamma rays was investigated using Monte-Carlo method, and the pulses from different crystal cases, including gamma deposition only in the LaBr3(Ce) or CsI(Tl) crystal and coincidence in both crystals, were analyzed. A novel pulse discrimination method for gamma deposition events based on wavelet transform analysis, called SSD (Scale Shape Discrimination), was developed in this study. Compared to the traditional PSD (Pulse Shape Discrimination) method, SSD has the advantage of transforming one-dimensional pulses in the time-domain into two-dimensional time-frequency spectra, providing the more useful features for pulse discrimination. The performances of the Compton suppression and Full-energy peak loss using PSD and SSD methods was studied. The results show that the Compton suppression factor IPSD = 5.12 and ISSD = 5.32, and FEP loss factor PLPSD = 0.0554 and PLSSD = 0.0587. Meanwhile, the influences of the cutoff values for pulse discrimination on the results of I and PL with different method were analyzed.

Keywords

References

  1. M. Kamuda, C.J. Sullivan, An automated isotope identification and quantification algorithm for isotope mixtures in low-resolution gamma-ray spectra, Radiat. Phys. Chem. 155 (2019) 281-286, https://doi.org/10.1016/j.radphyschem.2018.06.017.
  2. E.K. Elmaghraby, M. Tohamy, M.N.H. Comsan, Determination of isotopes activity ratio using gamma ray spectroscopy based on neural network model, Appl. Radiat. Isot. 148 (2019) 19-26, https://doi.org/10.1016/j.apradiso.2019.03.014.
  3. M. Schrenk, R. Arlt, P. Beck, et al., A real time, isotope identifying gamma spectrometer for monitoring of pedestrians, IEEE Trans. Nucl. Sci. 52 (2005) 3012-3019, https://doi.org/10.1109/TNS.2005.862909.
  4. J. Stinnett, C.J. Sullivan, H. Xiong, et al., Uncertainty analysis of wavelet-based feature extraction for isotope identification on NaI gamma-ray spectra, IEEE Trans. Nucl. Sci. 64 (2017) 1670-1676, https://doi.org/10.1109/TNS.2017.2676045.
  5. R. Britton, J.L. Burnett, A.V. Davies, et al., Improving the effectiveness of a low-energy Compton suppression system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 729 (2013) 64-68, https://doi.org/10.1016/j.nima.2013.06.111.
  6. H.S. Jung, H.Y. Cho, J.H. Lee, et al., Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1016-1019, https://doi.org/10.1016/j.nima.2007.06.058.
  7. A.V. Davies, J.L. Burnett, R. Britton, Performance testing of a Compton suppressed coincidence measurements using the Advanced Radionuclide Gamma-spectrOmeter, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 951 (2020) 163009, https://doi.org/10.1016/j.nima.2019.163009.
  8. R. Britton, J.L. Burnett, A.V. Davies, et al., Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 762 (2014) 42-53, https://doi.org/10.1016/j.nima.2014.05.113.
  9. C. Egozi, S. Landsberger, W.S. Charlton, et al., Use of Compton suppression gamma ray spectrometry to determine 239Pu, Appl. Radiat. Isot. 194 (2023) 110717, https://doi.org/10.1016/j.apradiso.2023.110717.
  10. H.D. Wang, J.B. Lu, R.P. Li, et al., An entrance window surrounded phoswich design for efficient large-angle Compton-suppressed and low-background GAGG: Ce detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1055 (2023) 168-9902, https://doi.org/10.1016/j.nima.2023.168542.
  11. R.P. Li, H.D. Wang, J.B. Lu, et al., Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation, AIP Adv. 13 (2023) 015006, https://doi.org/10.1063/5.0138163.
  12. H.S. Jung, H.Y. Cho, J.H. Lee, et al., Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1016-1019, https://doi.org/10.1016/j.nima.2007.06.058.
  13. Z.S. Hartwig, P. Gumplinger, Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 737 (2014) 155-162, https://doi.org/10.1016/j.nima.2013.11.027.
  14. Richard S. Woolf, Anthony L. Hutcheson, Chul Gwon, et al., Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 80-87, https://doi.org/10.1016/j.nima.2014.10.067.
  15. Kilyoung Ko, Changyeop Lee, Wonku Kim, et al., Study on the effect of operating conditions on SiPM-based digital γ/n pulse shape discrimination, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1062 (2024) 169225, https://doi.org/10.1016/j.nima.2024.169225.
  16. T.X. Li, H.Y. Wu, Y. Zheng, et al., Study on compton-suppressed phoswich gammaray detector of LaBr3 (Ce)-CsI(Tl), Nucl. Phys. Rev. 40 (2023) 73-77, https://doi.org/10.11804/NuclPhysRev.40.2022021.
  17. J. Allison, K. Amako, J. Apostolakis, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS.2006.869826.
  18. J. Allison, K. Amako, J. Apostolakis, et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.anucene.2014.08.021.
  19. J.L. Starck, R. Siebenmorgen, R. Gredel, Spectral analysis using the wavelet transform, Astrophys. J. 482 (1997) 1011, https://doi.org/10.1086/304186.
  20. C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectra, Nucl Sci Symp Conf Rec IEEE 1 (2004) 281-285, https://doi.org/10.1109/NSSMIC.2004.1462198.
  21. C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectra, IEEE Trans. Nucl. Sci. 53 (2006) 2016-2922, https://doi.org/10.1109/TNS.2006.881909.
  22. S. Yousefi, L. Lucchese, M.D. Aspinall, Digital discrimination of neutrons and gamma-rays in liquid scintillators using wavelets, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 598 (2009) 551-555, https://doi.org/10.1016/j.nima.2008.09.028.
  23. G.L. Yu, J.Z. Gu, H. Long, et al., Application of wavelet transform in γ-ray spectra analysis, SCIENCE China Physics, Mechanics & Astronomy 56 (2013) 1735-1739, https://doi.org/10.1007/s11433-013-5185-3.
  24. M.X. Cohen, A better way to define and describe Morlet wavelets for timefrequency analysis, Neuroimage 199 (2019) 81-86, https://doi.org/10.1016/j.neuroimage.2019.05.048.
  25. Y. Choi, K.B. Lee, K.J. Kim, et al., Development of an optimized Compton suppression gamma-ray spectrometric system using Monte Carlo simulation, Appl. Radiat. Isot. 109 (2016) 558-562, https://doi.org/10.1016/j.apradiso.2015.12.058.
  26. A.T. Farsoni, B. Alemayehu, A. Alhawsawi, et al., A compton-suppressed phoswich detector for gamma spectroscopy, J. Radioanal. Nucl. Chem. 296 (2013) 63-68, https://doi.org/10.1007/s10967-012-2009-2.