References
- M. Kamuda, C.J. Sullivan, An automated isotope identification and quantification algorithm for isotope mixtures in low-resolution gamma-ray spectra, Radiat. Phys. Chem. 155 (2019) 281-286, https://doi.org/10.1016/j.radphyschem.2018.06.017.
- E.K. Elmaghraby, M. Tohamy, M.N.H. Comsan, Determination of isotopes activity ratio using gamma ray spectroscopy based on neural network model, Appl. Radiat. Isot. 148 (2019) 19-26, https://doi.org/10.1016/j.apradiso.2019.03.014.
- M. Schrenk, R. Arlt, P. Beck, et al., A real time, isotope identifying gamma spectrometer for monitoring of pedestrians, IEEE Trans. Nucl. Sci. 52 (2005) 3012-3019, https://doi.org/10.1109/TNS.2005.862909.
- J. Stinnett, C.J. Sullivan, H. Xiong, et al., Uncertainty analysis of wavelet-based feature extraction for isotope identification on NaI gamma-ray spectra, IEEE Trans. Nucl. Sci. 64 (2017) 1670-1676, https://doi.org/10.1109/TNS.2017.2676045.
- R. Britton, J.L. Burnett, A.V. Davies, et al., Improving the effectiveness of a low-energy Compton suppression system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 729 (2013) 64-68, https://doi.org/10.1016/j.nima.2013.06.111.
- H.S. Jung, H.Y. Cho, J.H. Lee, et al., Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1016-1019, https://doi.org/10.1016/j.nima.2007.06.058.
- A.V. Davies, J.L. Burnett, R. Britton, Performance testing of a Compton suppressed coincidence measurements using the Advanced Radionuclide Gamma-spectrOmeter, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 951 (2020) 163009, https://doi.org/10.1016/j.nima.2019.163009.
- R. Britton, J.L. Burnett, A.V. Davies, et al., Monte-Carlo optimisation of a Compton suppression system for use with a broad-energy HPGe detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 762 (2014) 42-53, https://doi.org/10.1016/j.nima.2014.05.113.
- C. Egozi, S. Landsberger, W.S. Charlton, et al., Use of Compton suppression gamma ray spectrometry to determine 239Pu, Appl. Radiat. Isot. 194 (2023) 110717, https://doi.org/10.1016/j.apradiso.2023.110717.
- H.D. Wang, J.B. Lu, R.P. Li, et al., An entrance window surrounded phoswich design for efficient large-angle Compton-suppressed and low-background GAGG: Ce detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1055 (2023) 168-9902, https://doi.org/10.1016/j.nima.2023.168542.
- R.P. Li, H.D. Wang, J.B. Lu, et al., Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation, AIP Adv. 13 (2023) 015006, https://doi.org/10.1063/5.0138163.
- H.S. Jung, H.Y. Cho, J.H. Lee, et al., Improvement of the Compton suppression ratio of a standard BGO suppressor system by a digital pulse shape analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1016-1019, https://doi.org/10.1016/j.nima.2007.06.058.
- Z.S. Hartwig, P. Gumplinger, Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 737 (2014) 155-162, https://doi.org/10.1016/j.nima.2013.11.027.
- Richard S. Woolf, Anthony L. Hutcheson, Chul Gwon, et al., Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 80-87, https://doi.org/10.1016/j.nima.2014.10.067.
- Kilyoung Ko, Changyeop Lee, Wonku Kim, et al., Study on the effect of operating conditions on SiPM-based digital γ/n pulse shape discrimination, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1062 (2024) 169225, https://doi.org/10.1016/j.nima.2024.169225.
- T.X. Li, H.Y. Wu, Y. Zheng, et al., Study on compton-suppressed phoswich gammaray detector of LaBr3 (Ce)-CsI(Tl), Nucl. Phys. Rev. 40 (2023) 73-77, https://doi.org/10.11804/NuclPhysRev.40.2022021.
- J. Allison, K. Amako, J. Apostolakis, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS.2006.869826.
- J. Allison, K. Amako, J. Apostolakis, et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.anucene.2014.08.021.
- J.L. Starck, R. Siebenmorgen, R. Gredel, Spectral analysis using the wavelet transform, Astrophys. J. 482 (1997) 1011, https://doi.org/10.1086/304186.
- C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectra, Nucl Sci Symp Conf Rec IEEE 1 (2004) 281-285, https://doi.org/10.1109/NSSMIC.2004.1462198.
- C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectra, IEEE Trans. Nucl. Sci. 53 (2006) 2016-2922, https://doi.org/10.1109/TNS.2006.881909.
- S. Yousefi, L. Lucchese, M.D. Aspinall, Digital discrimination of neutrons and gamma-rays in liquid scintillators using wavelets, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 598 (2009) 551-555, https://doi.org/10.1016/j.nima.2008.09.028.
- G.L. Yu, J.Z. Gu, H. Long, et al., Application of wavelet transform in γ-ray spectra analysis, SCIENCE China Physics, Mechanics & Astronomy 56 (2013) 1735-1739, https://doi.org/10.1007/s11433-013-5185-3.
- M.X. Cohen, A better way to define and describe Morlet wavelets for timefrequency analysis, Neuroimage 199 (2019) 81-86, https://doi.org/10.1016/j.neuroimage.2019.05.048.
- Y. Choi, K.B. Lee, K.J. Kim, et al., Development of an optimized Compton suppression gamma-ray spectrometric system using Monte Carlo simulation, Appl. Radiat. Isot. 109 (2016) 558-562, https://doi.org/10.1016/j.apradiso.2015.12.058.
- A.T. Farsoni, B. Alemayehu, A. Alhawsawi, et al., A compton-suppressed phoswich detector for gamma spectroscopy, J. Radioanal. Nucl. Chem. 296 (2013) 63-68, https://doi.org/10.1007/s10967-012-2009-2.