• Title/Summary/Keyword: ${\gamma}$-2CaO·SiO$_2$

Search Result 9, Processing Time 0.028 seconds

Effect of Additives and Control of Sintering Atomsphere on Magnetic Properties of Mn-Zn Ferrite (첨가제 및 분위기 제어가 Mn-Zn Ferrite의 자기적 특성에 미치는 영향)

  • 이웅용;이대희;김창현;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.836-842
    • /
    • 1998
  • In this experiment well-know additives for Mn-Zn ferrites CaO and {{{{ { SiO}_{2 } }} were added at various content and their effects on microstructures and magnetic properties with sintering atmosphere were examined. By adding up to 0.04wt% {{{{ { SiO}_{2 } }} and and 0.06wt% CaO the sintered density was increased and then decreased gra-dually. Higher sintered density and initial permeability were observed by adding both CaO and {{{{ { SiO}_{2 } }} than by adding CaO or {{{{ { SiO}_{2 } }} alone. Without any additives initial permeability and tan$\delta$/${\mu}$ decreased at 1000kHz as oxidation degree(${\gamma}$) increased.

  • PDF

Pore Structure and Fractal Characters of Cement Mortar Containing γ-C2S (γ-C2S 혼입 시멘트 모르타르의 공극구조 및 Fractal특성)

  • Chen, Zheng-Xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.24-25
    • /
    • 2017
  • Gamma-C2S (γ-C2S) is a substance that is difficult to react with water under normal temperature but can absorb a large amount of CO2 in the air. The addition of γ-C2S to cementitious materials through the curing of CO2 can improve the pore structure and improve the durability of the material. In this study, three kind of Ca-bearing materials : CaO, Ca(OH)2, CaCO3, were calcined 2.5h at 1450℃ to synthesize γ-C2S after mixing with SiO2 respectively. Among them, Ca(OH)2 mixed with SiO2 after calcining shows highest content. Synthesized γ-C2S was added to the cement mortar, after water curing for 1 month, accelerated carbonation test was experimented. After 28d accelerated carbonation test, pore structure will be detectived by MIP. Based on the MIP result, following the calculation method of Fractal theory, the pore structure will be quantitative described.

  • PDF

Application of DV-X$\alpha$ Method to ${\gamma}$-2CaO.SiO$_2$

  • Yamaguchi, Norio;Fujimori, Hirotaka;Ioku, Koji;Goto, Seishi;Nakayasu, Tetsuo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.339-342
    • /
    • 2000
  • In the present study, we attempted to apply DV-X$\alpha$ method to expressing the reactivity of materials. The expression of reactivity was discussed by comparison between ${\gamma}$-C$_2$G having hydraulic activity and ${\gamma}$-C$_2$S not having hydraulic activity at normal conditions. It was found that the model cluster used for calculation can finely reproduce the bulk and surface states using with and without point charge, respectively. The hydration state was also represented by placing OH ̄ on the surface of the cluster. It was calculated that the bond strength of the first layer (as surface) was bigger than that of inner layers (as bulk) for ${\gamma}$-C$_2$S while that of the first layer for ${\gamma}$-C$_2$G was smaller than that of inner layers. Subsequently a model in which OH ̄ is coordinated on Ca at the surface was also calculated. The bond strength with OH ̄ was stronger than that without OH ̄, while for ${\gamma}$-C$_2$G the bond strength with OH ̄ was weaker than that without OH ̄. From these results, it is concluded that the hydraulic activity depends on whether the bond strength for hydrated state becomes weaker than that unhydrated state or not.

  • PDF

Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions (합성 및 원료 조건에 따른 γ-C2S의 순도)

  • Lee, Seok-Hee;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixing capacity and the production process with low CO2 emission, γ-C2S has attracted more attention of researchers. For the further development of γ-C2S applications in construction industry, this study aims to investigate the method for synthesizing high purity of γ-C2S. The influence of raw materials and calcination temperatures on the purity of γ-C2S was evaluated. Several Ca bearing materials were selected as the calcium source, the materials which's main component is SiO2 were used as the silicon source. Raw materials were mixed and calcined under different temperatures. The results revealed that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. In addition, a relatively economic synthesis method using natural mineral materials-limestone and silica sand as raw materials were developed for the practical application. The purity of synthetic γ-C2S was recorded up to 77.6%.

Catalytic activities and performance enhancement of Ni catalysts for CO2 reforming (이산화탄소 개질반응을 위한 니켈 촉매의 활성 및 성능향상)

  • Jun, So-Youn;Kim, Dong-Sun;Kim, Kweon-Ill
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.125-132
    • /
    • 2003
  • Activity improvement of Ni metal catalysts for carbon dioxide reforming was studied using HY-zeolite as the main supporter. As the reaction temperature increased, $CH_4$ and $CO_2$ conversions increased, and conversions higher than 80% was obtained above $700^{\circ}C$. As the Ni loading increased, the catalyst activity increased, and the highest activity was shown for the Ni loading of 13wt%. The HY-zeolite support showed the highest intial conversions of $CH_4$ and $CO_2$, but it showed faster deactivation than a ${\gamma}-Al_2O_3$ support. Nevertheless, it maintained the $CH_4$conversion higher than 80% after 24 hr reaction. The effect of promoters such as Mg, Mn, K, and Ca was also studied. It was observed that the Mg promotor exhibited the highest catalyst activity and less deactivation compared with Mn, K and Ca. After 24hr reaction, The optimum Mg content was found to be 5wt%.

  • PDF

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.