• Title/Summary/Keyword: ${\gamma}$- and X-ray Spectroscopy

Search Result 66, Processing Time 0.022 seconds

Application Study of Chemoinfometrical Near-Infrared Spectroscopic Method to Evaluate for Polymorphic Content of Pharmaceutical Powders (일본의 근적외선분광법에 대한 제약회사 응용 및 현황)

  • Otsuka, Makoto
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2002.11a
    • /
    • pp.97-117
    • /
    • 2002
  • A chemoinfometrical method for quantitative determination of crystal content of indomethacin (IMC) polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the conventional powder X-ray diffraction method was performed. Pure $\alpha$ and ${\gamma}$ forms of IMC were prepared using published methods. Powder X-ray diffraction profiles and NIR spectra were recorded for six kinds of standard materials with various content of ${\gamma}$ form IMC. The principal component regression (PCR) analyses were performed based on normalized NIR spectra sets of standard samples of known content of IMC ${\gamma}$ form. A calibration equation was determined to minimize the root mean square error of the prediction. The predicted ${\gamma}$ form content values were reproducible and had a relatively small standard deviation. The values of ${\gamma}$ form content predicted by two methods were in close agreement. The results were indicated that NIR spectroscopy provides for an accurate quantitative analysis of crystallinity in polymorphs compared with the results obtained by conventional powder X-ray diffractometry.

  • PDF

Investigation of a novel on-site U concentration analysis method for UO2 pellets using gamma spectroscopy

  • Lee, Haneol;Park, Chan Jong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1955-1963
    • /
    • 2021
  • As the IAEA has applied integrated safeguards and a state level approach to member states, the importance of national inspection has increased. However, the requirements for national inspection for some member states are different from the IAEA safeguards. In particular, the national inspection for the ROK requires on-site U concentration analysis due to a domestic notification. This research proposes an on-site U concentration analysis (OUCA) method for UO2 pellets using gamma spectroscopy to satisfy the domestic notification requirement. The OUCA method calculates the U concentration of UO2 pellets using the measured net X-ray counts and declared 235U enrichment. This research demonstrates the feasibility of the OUCA method using both MCNP simulation and experiment. It simulated and measured the net X-ray counts of different UO2 pellets with different U concentrations and 235U enrichments. The simulated and measured net X-ray counts were fitted to polynomials as a function of U concentration and 235U enrichment. The goodness-of-fit results of both simulation and experiment demonstrated the feasibility of the OUCA method.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

Green synthesis of Lead-Nickel-Copper nanocomposite for radiation shielding

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;R. Munirathnam;K.N. Sridhar;L. Seenappa;S. Manjunatha;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4671-4677
    • /
    • 2023
  • For the first time Pb, Ni, and Cu nanocomposites were synthesized by versatile solution combustion synthesis using Aloevera extract as a reducing agent, to study the potential applications in X-ray/gamma, neutron, and Bremsstrahlung shielding. The synthesized Lead-Nickel-Copper (LNC) nanocomposites were characterized by PXRD, SEM, UV-VIS, and FTIR for the confirmation of successful synthesis. PXRD analysis confirmed the formation of multiphase LNC NCs and the Scherrer equation and the W-H plot gave the average crystal sizes of 19 nm and 17 nm. Surface morphology using SEM and EDX confirmed the presence of LNC NCs. Strong absorption peaks were analyzed by UV visible spectroscopy and the direct energy gap is found to be 3.083 eV. Functional groups present in the LNC NCs were analyzed by FTIR spectroscopy. X-ray/gamma radiation shielding properties were measured using NaI(Tl) detector coupled with MCA. It is found to be very close to Pb. Neutron shielding parameters were compared with traditional shielding materials and found LNC NCs are better than lead and concrete. Secondary radiation shielding known as Bremsstrahlung shielding characteristics also studied and found that LNC NCs are best in secondary radiation shielding. Hence LNC NCs find shielding applications in ionizing radiation such as X-ray/gamma and neutron radiation.

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

Effect of Various Supports on the Physico-chemical Properties of V-Sb Oxides in the Oxidative Dehydrogenation of Isobutane

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.812-818
    • /
    • 2011
  • [ $V_{0.9}Sb_{0.1}O_x$ ]systems, bulk and deposited on different supports (five types of ${\gamma}$-aluminas, ${\alpha}$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. This statement is derived from the data obtained by a set of characterisation techniques(specific surface area measurements, X-ray diffraction, X-ray photoelectron spectroscopy, laser Raman spectroscopy, in situ differential scanning calorimetry and in situ diffuse reflectance-absorption infrared Fourier transform spectroscopy).

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.

An investigation of the nuclear shielding effectiveness of some transparent glasses manufactured from natural quartz doped lead cations

  • Kassem, Said M.;Ahmed, G.S.M.;Rashad, A.M.;Salem, S.M.;Ebraheem, S.;Mostafa, A.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2025-2037
    • /
    • 2021
  • The influence of lead cations on natural quartz (QZ) from Egypt as a glass shielding material for the composition with nominal formula (10Na2O - (90 - x) QZ - xPbO (where x = 30, 35, 40, 45 and 50 mol %)) was examined. The studied samples are synthesized via the melt quenching method at 1050 ℃. The X-ray diffraction XRD patterns were confirmed the glass nature for studied samples. Moreover, the optical properties, and the transparency for all compositions were examined by UV-Vis spectroscopy. Also, the major elemental composition of the natural quartz were estimated via the X-ray fluorescence (XRF) technique. Further, the density and molar volume were determined. Furthermore, the nuclear shielding parameters such as, mass attenuation coefficient, effective atomic number, electronic density, the total atomic, and electronic cross sections as well as the mean free path, and the half value layer with different gamma ray energies (81 keV-1407 keV) were calculated. Besides, the results showed that the shielding behavior towards the gamma ray radiation for all glass samples was increased as the increment in PbO concentration in the glass system.

MATERIAL INVESTIGATION AND ANALYSIS USING CHARACTERISTIC X-RAY

  • Oh, Gyu-Bum;Lee, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.426-433
    • /
    • 2010
  • The characteristic X-rays emitted from materials after gamma ray exposure was simulated and measured. A CdTe semiconductor detector and a $^{57}Co$ radiation source were used for energy spectroscopy. The types of materials could be identified by comparing the measured energy spectrum with the theoretical X-ray transition energy of the material. The sample composition was represented by the $K_{\alpha1}$-line (Siegbahn notations), which has the highest intensity among the characteristic X-rays of each atom. The difference between the theoretic prediction and the experimental result of K-line measurement was < 0.61% even if the characteristic X-rays from several materials were measured simultaneously. 2D images of the mixed materials were acquired with very high selectivity.