• 제목/요약/키워드: ${\alpha}$-Bloch spaces

검색결과 7건 처리시간 0.029초

TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

  • Kang, Si Ho
    • 충청수학회지
    • /
    • 제27권3호
    • /
    • pp.439-454
    • /
    • 2014
  • We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}}$ on the boundary of $\mathbb{D}$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

MULTIPLIERS OF WEIGHTED BLOCH SPACES AND BESOV SPACES

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.727-737
    • /
    • 2009
  • Let M(X) be the space of all pointwise multipliers of Banach space X. We will show that, for each $\alpha>1$, $M(\mathfrak{B}_\alpha)=M(\mathfrak{B}_{\alpha,0})=H^\infty{(B)}$. We will also show that, for each $0<{\alpha}<1$, $M(\mathfrak{B}_\alpha)$ and $M(\mathfrak{B}_{\alpha,0})$ are Banach algebras. It is established that certain inclusion relationships exist between the weighted Bloch spaces and holomorphic Besov spaces.

  • PDF

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).

EXTENDED CESÀRO OPERATORS BETWEEN α-BLOCH SPACES AND QK SPACES

  • Wang, Shunlai;Zhang, Taizhong
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.567-578
    • /
    • 2017
  • Many scholars studied the boundedness of $Ces{\grave{a}}ro$ operators between $Q_K$ spaces and Bloch spaces of holomorphic functions in the unit disc in the complex plane, however, they did not describe the compactness. Let 0 < ${\alpha}$ < $+{\infty}$, K(r) be right continuous nondecreasing functions on (0, $+{\infty}$) and satisfy $${\displaystyle\smashmargin{2}{\int\nolimits_0}^{\frac{1}{e}}}K({\log}{\frac{1}{r}})rdr<+{\infty}$$. Suppose g is a holomorphic function in the unit disk. In this paper, some sufficient and necessary conditions for the extended $Ces{\grave{a}}ro$ operators $T_g$ between ${\alpha}$-Bloch spaces and $Q_K$ spaces in the unit disc to be bounded and compact are obtained.

COMPOSITION OPERATORS FROM HARDY SPACES INTO α-BLOCH SPACES ON THE POLYDISK

  • SONGXIAO LI
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.703-708
    • /
    • 2005
  • Let ${\varphi}(z)\;=\;({\varphi}_1(Z),{\cdots},{\varphi}_n(Z))$ be a holomorphic self­map of $\mathbb{D}^n$, where $\mathbb{D}^n$ is the unit polydisk of $\mathbb{C}^n$. The sufficient and necessary conditions for a composition operator to be bounded and compact from the Hardy space $H^2(\mathbb{D}^n)$ into $\alpha$-Bloch space $\beta^{\alpha}(\mathbb{D}^n)$ on the polydisk are given.

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

LIPSCHITZ CONTINUOUS AND COMPACT COMPOSITION OPERATOR ACTING BETWEEN SOME WEIGHTED GENERAL HYPERBOLIC-TYPE CLASSES

  • Kamal, A.;El-Sayed Ahmed, A.;Yassen, T.I.
    • Korean Journal of Mathematics
    • /
    • 제24권4호
    • /
    • pp.647-662
    • /
    • 2016
  • In this paper, we study Lipschitz continuous, the boundedness and compactness of the composition operator $C_{\phi}$ acting between the general hyperbolic Bloch type-classes ${\mathcal{B}}^{\ast}_{p,{\log},{\alpha}}$ and general hyperbolic Besov-type classes $F^{\ast}_{p,{\log}}(p,q,s)$. Moreover, these classes are shown to be complete metric spaces with respect to the corresponding metrics.