MULTIPLIERS OF WEIGHTED BLOCH SPACES AND BESOV SPACES

  • Yang, Gye Tak (Department of Information Security, Konyang University) ;
  • Choi, Ki Seong (Department of Information Security, Konyang University)
  • Received : 2009.08.10
  • Accepted : 2009.11.06
  • Published : 2009.12.30

Abstract

Let M(X) be the space of all pointwise multipliers of Banach space X. We will show that, for each $\alpha>1$, $M(\mathfrak{B}_\alpha)=M(\mathfrak{B}_{\alpha,0})=H^\infty{(B)}$. We will also show that, for each $0<{\alpha}<1$, $M(\mathfrak{B}_\alpha)$ and $M(\mathfrak{B}_{\alpha,0})$ are Banach algebras. It is established that certain inclusion relationships exist between the weighted Bloch spaces and holomorphic Besov spaces.

Keywords

References

  1. C.A. Berger, L.A. Coburn and K.H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136 https://doi.org/10.1090/S0273-0979-1987-15539-X
  2. D. Bekolle, C.A. Berger, L.A. Coburn and K.H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350 https://doi.org/10.1016/0022-1236(90)90131-4
  3. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces B$_{q}$ , J. Korean Math. Soc. 39 (2002), 277-287 https://doi.org/10.4134/JKMS.2002.39.2.277
  4. K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem , Canadian J. Math. 27 (1975), 446-458 https://doi.org/10.4153/CJM-1975-053-0
  5. K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in C$^{n}$ , Manuscripta Math 71 (1991), 67-81 https://doi.org/10.1007/BF02568394
  6. K. T. Hahn and E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball , J. Math. Analysis and Appl. 175 (1993), 206-221 https://doi.org/10.1006/jmaa.1993.1163
  7. K. T. Hahn and E. H. Youssfi, Besov Spaces of M-harmonic functions on bounded symmetric domains , Math. Nachr. 163 (1993), 203-216 https://doi.org/10.1002/mana.19931630118
  8. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $^{n}$ , J. Korean Math. Soc. 35 (1998), 171-189
  9. W. Rudin, Function theory in the unit ball of $^{n}$ , Springer Verlag, New York 1980
  10. R. M. Timoney, Bloch functions of several variables , J. Bull. London Math. Soc. 12 (1980), 241-267 https://doi.org/10.1112/blms/12.4.241
  11. R. Zhao, A characterization of Bloch-type spaces on the unit ball of $^{n}$ , J. Matht. Anal. Appl. (2001), 1-7
  12. K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators , J. Funct. Anal. 87 (1989), 31-50 https://doi.org/10.1016/0022-1236(89)90003-7
  13. K. H. Zhu, Bloch type spaces of analytic functions , Rocky Mountain J. Math. 23 (1993), 1143-1177 https://doi.org/10.1216/rmjm/1181072549