• 제목/요약/키워드: ${\Gamma}$-algebra

검색결과 28건 처리시간 0.023초

CONSTRUCTION OF Γ-ALGEBRA AND Γ-LIE ADMISSIBLE ALGEBRAS

  • Rezaei, A.H.;Davvaz, Bijan
    • Korean Journal of Mathematics
    • /
    • 제26권2호
    • /
    • pp.175-189
    • /
    • 2018
  • In this paper, at first we generalize the notion of algebra over a field. A ${\Gamma}$-algebra is an algebraic structure consisting of a vector space V, a groupoid ${\Gamma}$ together with a map from $V{\times}{\Gamma}{\times}V$ to V. Then, on every associative ${\Gamma}$-algebra V and for every ${\alpha}{{\in}}{\Gamma}$ we construct an ${\alpha}$-Lie algebra. Also, we discuss some properties about ${\Gamma}$-Lie algebras when V and ${\Gamma}$ are the sets of $m{\times}n$ and $n{\times}m$ matrices over a field F respectively. Finally, we define the notions of ${\alpha}$-derivation, ${\alpha}$-representation, ${\alpha}$-nilpotency and prove Engel theorem in this case.

ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)γ OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

  • Jeong, Ja-A.
    • 대한수학회지
    • /
    • 제46권3호
    • /
    • pp.657-673
    • /
    • 2009
  • The fixed point algebra $C^*(E)^{\gamma}$ of a gauge action $\gamma$ on a graph $C^*$-algebra $C^*(E)$ and its AF subalgebras $C^*(E)^{\gamma}_{\upsilon}$ associated to each vertex v do play an important role for the study of dynamical properties of $C^*(E)$. In this paper, we consider the stability of $C^*(E)^{\gamma}$ (an AF algebra is either stable or equipped with a (nonzero bounded) trace). It is known that $C^*(E)^{\gamma}$ is stably isomorphic to a graph $C^*$-algebra $C^*(E_{\mathbb{Z}}\;{\times}\;E)$ which we observe being stable. We first give an explicit isomorphism from $C^*(E)^{\gamma}$ to a full hereditary $C^*$-subalgebra of $C^*(E_{\mathbb{N}}\;{\times}\;E)({\subset}\;C^*(E_{\mathbb{Z}}\;{\times}\;E))$ and then show that $C^*(E_{\mathbb{N}}\;{\times}\;E)$ is stable whenever $C^*(E)^{\gamma}$ is so. Thus $C^*(E)^{\gamma}$ cannot be stable if $C^*(E_{\mathbb{N}}\;{\times}\;E)$ admits a trace. It is shown that this is the case if the vertex matrix of E has an eigenvector with an eigenvalue $\lambda$ > 1. The AF algebras $C^*(E)^{\gamma}_{\upsilon}$ are shown to be nonstable whenever E is irreducible. Several examples are discussed.

THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

  • ADJI, SRIWULAN;ZAHMATKESH, SAEID
    • 대한수학회지
    • /
    • 제52권4호
    • /
    • pp.869-889
    • /
    • 2015
  • Let ${\Gamma}^+$ be the positive cone in a totally ordered abelian group ${\Gamma}$, and ${\alpha}$ an action of ${\Gamma}^+$ by extendible endomorphisms of a $C^*$-algebra A. Suppose I is an extendible ${\alpha}$-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I{\times}^{piso}_{\alpha}{\Gamma}^+$ embeds naturally as an ideal of $A{\times}^{piso}_{\alpha}{\Gamma}^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal $\mathcal{I}$ together with the kernel of a natural homomorphism $\phi:A{\times}^{piso}_{\alpha}{\Gamma}^+{\rightarrow}A{\times}^{iso}_{\alpha}{\Gamma}^+$ gives a composition series of ideals of $A{\times}^{piso}_{\alpha}{\Gamma}^+$ studied by Lindiarni and Raeburn.

Γ - BCK-ALGEBRAS

  • Eun, Gwang Sik;Lee, Young Chan
    • 충청수학회지
    • /
    • 제9권1호
    • /
    • pp.11-15
    • /
    • 1996
  • In this paper we prove that if Y is a poset of the form $\underline{1}{\oplus}Y^{\prime}$ for some subposet Y' then BCK(Y) is a ${\Gamma}$-BCK-algebra. Moreover, if X is a BCI-algebra then Hom(X, BCK(Y)) is a positive implicative ${\Gamma}$-BCK-algebra.

  • PDF

A NEW PROOF OF MACK'S CHARACTERIZATION OF PCS-ALGEBRAS

  • Kim, Hyoung-Soon;Woo, Seong-Choul
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.59-63
    • /
    • 2003
  • Let A be a $C^*$-algebra and $K_{A}$ its Pedersen's ideal. A is called a PCS-algebra if the multiplier $\Gamma(K_{A})\;of\;K_{A}$ is the multiplier M(A) of A. J. Mack [5]characterized PCS-algebras by weak compactness on the spectrum of A. We give a new simple proof of this Mack's result using the concept of semicontinuity and N. C. Phillips' description of $\Gamma(K_{A})$.

GENERALIZED MCKAY QUIVERS, ROOT SYSTEM AND KAC-MOODY ALGEBRAS

  • Hou, Bo;Yang, Shilin
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.239-268
    • /
    • 2015
  • Let Q be a finite quiver and $G{\subseteq}Aut(\mathbb{k}Q)$ a finite abelian group. Assume that $\hat{Q}$ and ${\Gamma}$ are the generalized Mckay quiver and the valued graph corresponding to (Q, G) respectively. In this paper we discuss the relationship between indecomposable $\hat{Q}$-representations and the root system of Kac-Moody algebra $g({\Gamma})$. Moreover, we may lift G to $\bar{G}{\subseteq}Aut(g(\hat{Q}))$ such that $g({\Gamma})$ embeds into the fixed point algebra $g(\hat{Q})^{\bar{G}}$ and $g(\hat{Q})^{\bar{G}}$ as a $g({\Gamma})$-module is integrable.

A BASIS OF THE SPACE OF MEROMORPHIC QUADRATIC DIFFERENTIALS ON RIEMANN SURFACES

  • Keum, J.H.;Lee, M.K.
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.127-134
    • /
    • 1998
  • It is proved [6] that there exists a basis of $L^\Gamma$ (the space of meromorphic vector fields on a Riemann surface, holomorphic away from two fixed points) represented by the vector fields which have the expected zero or pole order at the two points. In this paper, we carry out the same task for the quadratic differentials. More precisely, we compute a basis of $Q^\Gamma$ (the sapce of meromorphic quadratic differentials on a Riemann surface, holomorphic away from two fixed points). This basis consists of the quadratic differentials which have the expected zero or pole order at the two points. Furthermore, we show that $Q^\Gamma$ has a Lie algebra structure which is induced from the Krichever-Novikov algebra $L^\Gamma$.

  • PDF

TENSOR PRODUCTS OF C*-ALGEBRAS WITH FIBRES GENERALIZED NONCOMMUTATIVE TORI AND CUNTZ ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • 충청수학회지
    • /
    • 제13권1호
    • /
    • pp.139-144
    • /
    • 2000
  • The generalized noncommutative torus $T_{\rho}^d$ of rank m was defined in [2]. Assume that for the completely irrational noncommutative subtorus $A_{\rho}$ of rank m of $T_{\rho}^d$ there is no integer q > 1 such that $tr(K_0(A_{\rho}))=\frac{1}{q}{\cdot}tr(K_0(A_{\rho^{\prime}}))$ for $A_{\rho^{\prime}}$ a completely irrational noncommutative torus of rank m. All $C^*$-algebras ${\Gamma}({\eta})$ of sections of locally trivial $C^*$-algebra bundles ${\eta}$ over $M=\prod_{i=1}^{e}S^{2k_i}{\times}\prod_{i=1}^{s}S^{2n_i+1}$, $\prod_{i=1}^{s}\mathbb{PR}_{2n_i}$, or $\prod_{i=1}^{s}L_{k_i}(n_i)$ with fibres $T_{\rho}^d{\otimes}M_c(\mathbb{C})$ were constructed in [6, 7, 8]. We prove that ${\Gamma}({\eta}){\otimes}M_{p^{\infty}}$ is isomorphic to $C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C}){\otimes}M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u}{\otimes}{\Gamma}({\eta})$ is isomorphic to $\mathcal{O}_{2u}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty}{\otimes}{\Gamma}({\eta})$ is not isomorphic to $\mathcal{O}_{\infty}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if cd > 1 when no non-trivial matrix algebra can be ${\Gamma}({\eta})$.

  • PDF

DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS

  • Yi, In-Hyeop
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.199-209
    • /
    • 2012
  • For a locally compact higher rank graph ${\Lambda}$, we construct a two-sided path space ${\Lambda}^{\Delta}$ with shift homeomorphism ${\sigma}$ and its corresponding path groupoid ${\Gamma}$. Then we find equivalent conditions of aperiodicity, cofinality and irreducibility of ${\Lambda}$ in (${\Lambda}^{\Delta}$, ${\sigma}$), ${\Gamma}$, and the groupoid algebra $C^*({\Gamma})$.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.