Acknowledgement
Supported by : National Natural Science Foundation of China
References
- I. Assem, D. Simson, and A. Skowronski, Elements of Representation Theory of Asso- ciative Algebras. Vol. 1, Cambridge University Press, 2006.
- M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511-531. https://doi.org/10.1090/S0002-9947-1986-0816307-7
- M. Auslander, I. Reiten, and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., Vol. 36, Cambridge University Press, 1995.
- W. Crawley-Boevey and M. P. Holland, Noncommutative deformations of Kleinian sin- gularities, Duke Math. J. 92 (1998), no. 3, 605-635. https://doi.org/10.1215/S0012-7094-98-09218-3
- L. Demonet, Skew group algebras of path algebras and preprojective algebras, J. Algebra 323 (2010), no. 4, 1052-1059. https://doi.org/10.1016/j.jalgebra.2009.11.034
- B. Deng, J. Du, B. Parshall, and J. Wang, Finite Dimensional Algebras and Puantum Groups, Math. Surveys and Monographs 150, American Mathematical Society, Providence, 2008.
- V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, 57 pp.
- J. Guo, On the McKay quivers and m-Cartan Matrices, Sci. China Ser. A 52 (2009), no. 3, 511-516. https://doi.org/10.1007/s11425-008-0176-y
- J. Guo and Martiinez-Villa, Algebra pairs associated to McKay quivers, Comm. Algebra 30 (2002), no. 2, 1017-1032. https://doi.org/10.1081/AGB-120013196
- B. Hou and S. Yang, Skew group algebras of deformed preprojective algebras, J. Algebra 332 (2011), 209-228. https://doi.org/10.1016/j.jalgebra.2011.02.007
- A. Hubery, Representations of quiver respecting a quiver automorphism and a of Kac, Ph. D. thesis, Leeds Univeraity, 2002.
- A. Hubery, Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac, J. London Math. Soc. 69 (2004), no. 1, 79-96. https://doi.org/10.1112/S0024610703004988
- V. G. Kac, Infinite Dimensional Lie Algebras, 3rd edn, Cambridge University Press, Cambridge, 1990.
- V. G. Kac and S. P. Wang, On automorphisms of Kac-Moody algebras and groups, Adv. Math. 92 (1992), no. 2, 129-195. https://doi.org/10.1016/0001-8708(92)90063-Q
- G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Etudes Sci. Publ. Math. 76 (1992), 111-163. https://doi.org/10.1007/BF02699432
- J. McKay, Graphs, singularities and finite groups, Proc. Sympos. Pure Math., vol. 37, pp. 183-186, Amer. Math. Soc., Providence, RI, 1980.
- M. Reid, McKay correspondance, arXiv:math.AG/9702016.
- I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra 92 (1985), no. 1, 224-282. https://doi.org/10.1016/0021-8693(85)90156-5